## Astrophysics II – ASTR:3772 Spring 2015

- Prof. Kaaret
  702 Van Allen Hall
  335-1985
  philip-kaaret@uiowa.edu
- Office hours: Tuesday 1:30-2:30 pm, Wednesday 9-11 am, or by appointment, or drop by.



#### Nuts and Bolts

- Lectures are 9:30-10:45 am Tuesdays and Thursdays in 358 VAN.
- The required textbook is *Astrophysics in a Nutshell* by Dan Maoz.
- http://astro.physics.uiowa.edu/~kaaret/2015s\_astr3772
- Students are expected to attend all lectures.
- Two in-class exams and a Final.
- Grade:
  - Each one-hour exam 100 points.
  - Final examination 120 points.
  - Homework 100-200 points.
- Homework due at the *beginning* of class. OK to work in small groups, but be sure to understand each problem. Students will be called on to present problems in class and will receive full credit for those problems.

# Spiral Galaxies

- Parts are
- Disk
  - Gas, dust,
    young stars in
    circular orbits
- Bulge
  - Old stars in random orbits
- Halo
  - Globular
    clusters and old
    stars in random
    orbits





- Distance from Sun to Galactic center  $R = 8.0 \pm 0.5$  kpc.
- Orbital velocity of Sun around Galactic center v = 220 km/s.
- Orbital period =  $2\pi R/v = 2 \times 10^8$  years.
- Can we calculate the mass of the Milky Way?



- Mass of MW internal to  $Sun = 1.8 \times 10^{44} \text{ g} = 10^{11} \text{ solar masses.}$
- Average mass of stars in MW is ~ 0.5 solar masses.
  - How do we know that?
- About half the mass interior to the Sun is stars, so there are about 10<sup>11</sup> stars interior to the Sun. Other half of mass is dark matter.

# Disk of the Milky Way

• Density profile:

$$p(r,z) = \rho_0 \left[ \exp\left(-\frac{r}{r_d}\right) \right] \left[ \exp\left(-\frac{|z|}{h_d}\right) \right]$$

r = radial distance in center, z = distance above/below plane

- Scale length of disk  $R_d = 3.5 \pm 0.5$  kpc.
- Scale height of disk  $h_d$  = 330 pc for older (solar mass) stars.
- Scale height of disk  $h_d$  = 160 pc for gas and dust (why smaller?).
- About 10<sup>10</sup> solar masses with "one scale radius".
- Estimate stellar density, mean separation, collision rate.

## Spiral Arms



- Spiral arms have enhanced gas density and star formation rate.
- Stars form in arms, move out. Older stars pass through arms.
- Arms are density waves.



- Bulge radius ~ 1 kpc, density  $\rho \sim r^{-3}$ .
- Halo radius ~ 50 kpc.
- Age of stars in bulge and halo 10-14 Gyr.
- Spheroid stars have lower metallicity than Sun, as low as 10<sup>-4.5</sup> solar. Why?



- Lots of stars, gas, dust, and a supermassive black hole.
- Orbits of stars near Sgr A\* indicate dark object of 4×10<sup>6</sup> solar masses.
- Black hole is radio and X-ray source.



- Orbital speeds of stars at large Galactocentric radius are larger than expected if orbits are maintained only by gravitational pull of visible matter (stars+gas).
- Need "dark matter".
- Rotation curve is flat at large radii. What is density profile of dark matter?

## Luminosity Functions



- Luminosity function = *N*(>*L*) = number of objects above a given luminosity as a function of that luminosity.
- A similar function can be defined using fluxes, N(> f) = number of objects observed above flux *f*.
- If you have many stars all of the same luminosity, *L*, randomly distributed in space, what is *n* in *N*(> *f*) ~ *f*<sup>n</sup>?

#### Homework

- For next class:
  - Problems 6-1