Outline

- Go over problem 6.4
- Eddington limit review "Interacting Binaries" lecture from Fall
- Active galactic nuclei
- Variability
- Spectral energy distribution
- Optical spectra
- Jets

Eddington Luminosity

• Maximum accretion rate and maximum luminosity occurs when radiation pressure exactly balances gravity. This is the "Eddington luminosity"

$$L_E = \frac{4 \pi c G M m_p}{\sigma_T}$$

$$L_E = 1.3 \times 10^{38} \text{ erg/s} \frac{M}{M_{\text{Sun}}} = 3.3 \times 10^4 L_{\text{Sun}} \frac{M}{M_{\text{Sun}}}$$

- For $M = 4 \times 10^6 M_{Sun}$, have $L = 1.3 \times 10^{11} L_{Sun}$
- For comparison, luminosity of Milky Way is $L = 2 \times 10^{10} L_{sun}$
- Central black hole would outshine whole galaxy if radiating near the Eddington limit.

Active Galactic Nuclei

- Defined as galaxies with significant non-stellar light
- Evidence for non-stellar origin:
 - Rapid variability
 - Spectral energy distribution
 - Optical spectrum
 - Relativistic jets

Rapid Variability

- Places upper bound on the size of emitting region, $R < c\Delta t$.
- From X-ray light curve of NGC 3516 in 2-10 keV band, see variability on $\Delta t \sim 0.25$ days.
- Size R < 0.2 light-days = 40 A.U. = really small.

Spectral Energy Distribution

- Stars produce thermal spectral with temperatures of 10³-10⁵ K.
- AGN is bright at radio, IR, optical/UV, X-rays (sometimes gamma-rays).
- Radio and gamma-rays are from jets.
- "UV bump" is from accretion disk find accretion disk temperature.

Accretion Disks

• Temperature versus radius in accretion disk

$$T(r) = \left(\frac{GM \dot{M}}{8\pi\sigma}\right)^{1/4} r^{-3/4}$$

• Radiative efficiency is fraction of rest mass energy of accreted matter that is radiated

$$\eta = \frac{L}{\dot{M}c^2} = \frac{1}{2}\frac{GM}{r_{\rm in}c^2}$$

- For non-rotating black hole, stable orbits are not possible inside of the "innermost stable circular orbit" at $r_{in} = 3r_s = 6GM/c^2$ and $\eta = 0.057$.
- Find mass accretion rate for 10⁹ solar mass BH at Eddington luminosity and the corresponding disk temperature and frequency of peak.

Optical Spectrum

- UV/X-ray flux from accretion disk photoionizes surrounding gas.
- Optical spectra show strong emission lines.
- Emission lines are broad indicating speeds of 10³-10⁴ km/s due to motion around black hole.

Relativistic jets

- Jet of Hercules A, $R = 10^6$ light years.
- Luminosity of jet, $L = 10^{45}$ erg/s.
- Power source active for $\tau > R/s$, where *s* = speed of jet = 0.1*c* to *c*, $\tau \sim 10^7$ years.
- η = efficiency for conversion of mass to energy, $E = \eta mc^2 = L\tau$.
 - $\eta = 0.007$ for stellar nuclear burning
 - $\eta = 0.057$ for non-rotating BH
 - $\eta = 0.42$ for maximally-rotating BH
- Calculate mass needed to produce jet

Homework

- For next class:
 - Problem 6-7 (MOND)