Outline

- Go over problem 7.1
- Hubble expansion
- Cosmic clocks

- Galaxies are moving away with speed, v, proportional to distance, D,

$$
v=H_{0} D
$$

- $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}=$ Hubble "constant" - not actually a constant.

Hubble
 Expansion

- Expansion appears the same to all observers - work out on board.
- Implies no center to expansion.
- Work out age of universe on board.

Cosmic Clocks

- It is useful to check cosmological age estimates using the ages of physical objects in the universe.
- These provide only lower bounds on the age of the universe
- White dwarf cooling
- white dwarfs start at roughly the same temperature
- coolest white dwarfs require $\sim 10 \mathrm{Gyr}$ to cool
- Ages of globular clusters
- construct HR diagrams for old clusters
- oldest are 10-15 Gyr
- Ratios of radioactive elements

Radiometric Dating

- Need some object that produces two isotopes of a radioactive element in a known or calculable ratio.
- Each isotope decays with its own half life.
- Measure current ratio of isotopes. Can calculate age of object from known half lives and known initial ratio.
- Work out on board.
- Best to pick isotopes with half life ~ age of object

Radiometric Dating

- ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{U}$
- made in supernova, ratio ~ 1.2
- current ratio on Earth, gives age of Earth or solar nebula
- ${ }^{12} \mathrm{C}$ and ${ }^{14} \mathrm{C}$
- found in fossils of organic matter
- ${ }^{12} \mathrm{C}$ is stable $(1 / \tau=0)$
- ${ }^{14} \mathrm{C}$ is made via cosmic ray interactions in atmosphere
- assume initial ratio set by current atmospheric ratio

Isochron Plot

- ${ }^{87} \mathrm{Rb}$ decays to ${ }^{87} \mathrm{Sr},{ }^{86} \mathrm{Sr}$ is stable
- ${ }^{87} \mathrm{Sr}$ and ${ }^{86} \mathrm{Sr}$ are chemically identical, so ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}=$ constant within rock
- ${ }^{87} \mathrm{Rb} /{ }^{86} \mathrm{Sr}$ can vary from place to place
- as ${ }^{87} \mathrm{Rb}$ decays, ${ }^{87} \mathrm{Sr}$ builds up $\rightarrow{ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ increases, ${ }^{87} \mathrm{Rb} /{ }^{66} \mathrm{Sr}$ decreases
- work out formula for slope

Homework

For next class: problem 7.2

- Why are there radial lines of galaxies in the position-redshift diagram below?

