Outline

- Go over homework
 - What does it mean that the Universe is expanding?
- Equation of state of universe
- Solutions of the Friedmann equations

Friedmann Equations

• First Friedmann equation:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi}{3}G\rho - \frac{kc^2}{R^2}$$

• Acceleration equation: $\frac{\ddot{R}}{R} = -\frac{4\pi G}{3c^2} (\rho c^2 + 3P)$

- Energy conservation: $\dot{\rho}c^2 = -3\frac{\dot{R}}{R}(\rho c^2 + P)$
- Want to find *R*(*t*)
 - First need to know dependence of ρ and *P* on *R*.
 - The equation of state of the universe.

Equation of State of the Universe

- Matter dominated: $\rho c^2 >> P$
 - Use energy conservation to show $\rho \sim R^{-3}$
- Radiation dominated: $P = (1/3)u = (1/3) \rho c^2$
 - Use energy conservation to show $\rho \sim R^{-4}$

Time Evolution of the Universe

• Want to find *R*(*t*), use first equation

$$\frac{\dot{R}}{R}\bigg|^2 = \frac{8\pi}{3}G\rho - \frac{kc^2}{R^2}$$

- *R* is smaller at earlier times
- Early enough, $\rho \sim R^{-3}$ or R^{-4} will dominate over R^{-2}
- Matter dominated: $R \sim t^{2/3}$ (work out on board)
- Radiation dominated: $R \sim t^{1/2}$ (work out on board)
- Radiation dominates at very early times, $R \rightarrow 0$, $\rho \rightarrow \infty = big bang$
- Find evolution at later times, keeping *k* term, on board.
 - Recall $H = \dot{R}/R$

Time Evolution of the Universe

• Find time for transition from radiation to matter dominated and age of universe on board.

Homework

- For next class:
 - Problem 8.1