Outline

- Go over homework (8.1)
- Newtonian equivalents of Friedmann equations
- Solutions
Friedmann Equations

- First Friedmann equation: \[\left(\frac{\dot{R}}{R} \right)^2 = \frac{8\pi}{3} G \rho - \frac{k c^2}{R^2} \]

- Acceleration equation: \[\frac{\ddot{R}}{R} = -\frac{4\pi G}{3 c^2} \left(\rho c^2 + 3P \right) \]

- Energy conservation: \[\dot{\rho} c^2 = -3 \frac{\dot{R}}{R} \left(\rho c^2 + P \right) \]

- Want to find \(R(t) \)
 - First need to know dependence of \(\rho \) and \(P \) on \(R \).
 - The equation of state of the universe.
Newtonian Model of the Universe

• Model universe as a sphere of radius R, mass M, density ρ.
• Consider motion of a galaxy of mass m at edge of sphere.
 – Kinetic + potential = total energy = E
 – Behavior for $E = 0$, $E < 0$, $E > 0$?
 – Do on board, compare to Friedmann equations.

• Find acceleration equation on board, compare to Friedmann

• How do we deal with pressure?
 – Derive third Freidmann equation.
Homework

• For next class:
 – Problem 8.2