Outline

- Go over homework (8.3)
- Friedmann equations with cosmological constant
- Observable effects of cosmological constant/dark energy

Friedmann Equations

- First Friedmann equation:

$$
\left(\frac{\dot{R}}{R}\right)^{2}=\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{R^{2}}+\frac{\Lambda}{3}
$$

- Acceleration equation: $\frac{\ddot{R}}{R}=-\frac{4 \pi G}{3 c^{2}}\left(\rho c^{2}+3 P\right)+\frac{\Lambda}{3}$
- Previously derived energy conservation equation from first two. Do that for the case with dark energy.

$$
\dot{\rho} c^{2}=-3 \frac{\dot{R}}{R}\left(\rho c^{2}+P\right)
$$

Equation of State of the Universe

- Matter dominated: $\rho c^{2} \gg P$
- Use energy conservation to show $\rho \sim R^{-3}$
- Radiation dominated: $P=(1 / 3) u=(1 / 3) \rho c^{2}$
- Use energy conservation to show $\rho \sim R^{-4}$
- What is equation of state for Λ ?
- Use Friedmann equations substituting in ε_{Λ} and P_{Λ}.
- Find $\mathrm{P}_{\Lambda}=-\varepsilon_{\Lambda}$

Homework

- For next class, problem 8.5.

