Outline

- Go over problem 9.2
- Cosmological recombination
- Cosmic Microwave Background

Equation of State of the Universe

- Radiation dominated: $P = (1/3)u = (1/3) \rho c^2$
 - Use energy conservation to show $\rho \sim R^{-4}$
- Matter dominated: $\rho c^2 >> P$
 - Use energy conservation to show $\rho \sim R^{-3}$
- Λ dominated: $P_{\Lambda} = -\epsilon_{\Lambda}$
 - $\rho \sim \varepsilon_{\Lambda}/c^2 = constant$
- Which dominated at early times?

Radiation Dominated Era

- Mass/energy density $\rho \sim R^{-4}$
- Mass/energy density in radiation $\rho c^2 = aT^4$
- Solve for *T*, find $T \sim 1/R$

- Early universe was hot
- Atoms were ionized
 - Universe was opaque due to electron scattering
- When universe cooled, $T \sim 3000$ K, atoms recombined
 - Universe became transparent to light $\lambda < Lyman-\alpha$
 - Was universe transparent for $\lambda(T \sim 3000 \text{ K})$?

Recombination

A Before recombination: The universe was opaque

B After recombination: The universe was transparent

Transition occurs at around T = 30000-4000 K.

Recombination

- Before recombination, atoms and radiation were in equilibrium.
 - Atoms and radiation at the same temperature
 - Radiation had a black body spectrum
- Recombination decoupled radiation from matter
 - Radiation still had a black body spectrum
 - Radiation continued to evolve
 - Number density $n \sim R^{-3}$
 - Photon energy $E \sim R^{-1}$
 - Energy density $\rho \sim R^{-4}$
 - Show on board that radiation maintains blackbody spectrum

Cosmic Microwave Background

- Blackbody spectrum
- Temperature $T_{cmb} = T_{rec}/(1+z_{rec}) = 2.725 \text{ K}$

Cosmic Microwave Background

- CMB photons have travelled from reionization to us we actually see back to the surface of last scatter.
- CMB covers the whole sky. Instrument with larger field of view will measure more flux. One measures intensity = energy flux per unit solid angle
- If on Rayleigh-Jeans side of peak, can translate intensity to "brightness temperature",
- $B_{v} = (2v^2/c^2) kT$

The cosmic microwave background Radiation's "surface of last scatter" is analogous to the light coming through the clouds to our eye on a cloudy day.

Cosmic Microwave Background

- Number density of photons in CMB
 - energy density/average photon energy
 - $= aT^4/(2.8 \ kT) = 400 \ \text{cm}^{-3}$
- Number density of photons in star light ~ 0.004 cm⁻³
- Number density of baryons
 - $= 0.04 \, \rho_{\rm c}/m_{\rm p} = 2 \times 10^{-7} \, {\rm cm}^{-3}$
 - Baryon to photon ratio $\sim 5 \times 10^{-10}$

Homework

For next class: problem 9.3