Outline

- Go over problem 9.2
- Cosmological recombination
- Cosmic Microwave Background

Equation of State of the Universe

- Radiation dominated: $P=(1 / 3) u=(1 / 3) \rho c^{2}$
- Use energy conservation to show $\rho \sim R^{-4}$
- Matter dominated: $\rho c^{2} \gg P$
- Use energy conservation to show $\rho \sim R^{-3}$
- Λ dominated: $\mathrm{P}_{\Lambda}=-\varepsilon_{\Lambda}$
- $\rho \sim \varepsilon_{\Lambda} / \mathrm{c}^{2}=$ constant
- Which dominated at early times?

Radiation Dominated Era

- Mass/energy density $\rho \sim R^{-4}$
- Mass/energy density in radiation $\rho c^{2}=a T^{4}$
- Solve for T, find $T \sim 1 / R$
- Early universe was hot
- Atoms were ionized
- Universe was opaque due to electron scattering
- When universe cooled, $T \sim 3000 \mathrm{~K}$, atoms recombined
- Universe became transparent to light $\lambda<$ Lyman- α
- Was universe transparent for $\lambda(T \sim 3000 \mathrm{~K})$?

Recombination

A Before recombination: The universe wos opaque

B After recombination: The universe wos transporent

Transition occurs at around $T=30000-4000 \mathrm{~K}$.

Recombination

- Before recombination, atoms and radiation were in equilibrium.
- Atoms and radiation at the same temperature
- Radiation had a black body spectrum
- Recombination decoupled radiation from matter
- Radiation still had a black body spectrum
- Radiation continued to evolve
- Number density $n \sim R^{-3}$
- Photon energy $E \sim R^{-1}$
- Energy density $\rho \sim R^{-4}$
- Show on board that radiation maintains blackbody spectrum

Cosmic Microwave Background

- Blackbody spectrum
- Temperature $T_{\mathrm{cmb}}=T_{\mathrm{rec}}\left(1+\mathrm{Z}_{\mathrm{rec}}\right)=2.725 \mathrm{~K}$

Cosmic

Microwave

Background

- CMB photons have travelled from reionization to us - we actually see back to the surface of last scatter.
- CMB covers the whole sky. Instrument with larger field of view will measure more flux. One measures intensity = energy flux per unit solid angle
- If on Rayleigh-Jeans side of peak, can translate intensity to "brightness temperature",
- $B_{v}=\left(2 v^{2} / c^{2}\right) k T$

The cosmic microwave background Radiation's "surface of last scatter" is analogous to the light coming through the clouds to our eye on a cloudy day.

Cosmic Microwave Background

- Number density of photons in CMB
- = energy density/average photon energy
$-\quad=a T^{4} /(2.8 \mathrm{kT})=400 \mathrm{~cm}^{-3}$
- Number density of photons in star light $\sim 0.004 \mathrm{~cm}^{-3}$
- Number density of baryons

$$
-=0.04 \rho_{\mathrm{c}} / m_{\mathrm{p}}=2 \times 10^{-7} \mathrm{~cm}^{-3}
$$

- Baryon to photon ratio $\sim 5 \times 10^{-10}$

Homework

For next class: problem 9.3

