Outline

- Go over problem 9.2
- Fluctuations in the Cosmic Microwave Background

Cosmic Microwave Background

- After removing a dipole due to our peculiar motion (600 km/s), the CMB is uniform with rootmean-square fluctuations of $\delta T = 29 \ \mu K \ or \ \delta T/T \sim 10^{-5}$.
- This is actually a problem, but we'll ignore it for now and assume that the universe started off very homogeneous, but with some distribution of small fluctuations in matter/radiation.
- Fluctuations are sound waves: hot/dense versus cool/rarefied.
- How do we describe the fluctuations?

Fourier Transform

- Any periodic function can be described as a sum of sines and cosines (Fourier's theorem).
- The "Power spectrum" shows how strongly the signal fluctuations at a particular frequency or wavelength.
- Perturbations vary at their characteristic frequency.

• Describe CMB in terms of correlation function and power spectrum.

- Need to do in terms of spherical harmonics, l = 1 dipole, l = 2 quadrapole, ...
- Angular scale $\theta \sim \pi/l = 180^{\circ}/l$

CMB

power

spectra

• Specify power at each l as C_l

Fluctuations in CMB

- How is the size of a mode related to its frequency?
 - Wavelength $\lambda = c_s v$, where c_s is the speed of sound in the medium.
 - Or $\lambda = c_s/\tau$, where $\tau = 1/v$ is the period of the mode.
- Early universe was radiation dominated, equation of state: $P = (1/3)\rho c^2$.
- Speed of sound:

$$c_s = \sqrt{\frac{dP}{d\rho}} = \frac{c}{\sqrt{3}}$$

- CMB lets us see the universe at the time of recombination t_{rec} .
- What fluctuations should be largest at that point?

Acoustic Peaks

- Modes with largest amplitude will be those with $\tau = t_{rec}/2$.
- Hence, $\lambda = c_s/\tau = 2c_s t_{rec} = \frac{2ct_{rec}}{\sqrt{3}}$
- This gives us a
 - "ruler" = size of the fluctuations in the CMB
 - at a known distance = distance to when age of universe = $t_{rec}/2$.
- We can use this to directly measure the geometry of the universe.

- Fluctuations with wavelengths near $2c_s t_{rec} = 2ct_{rec}/\sqrt{3}$ should have the largest amplitudes.
- We can use this to directly measure the geometry of the universe by comparing measured angular size of fluctuations to calculated size.
- Calculate expected angular size for k=0 on board.

- Peak is at ~0.8° or *l* ~ 200.
- What sets width of peak? Why are there multiple peaks?
- Position of first peak gives $\Omega = 1.02 \pm 0.02$ from WMAP data.

- All of the wiggles can be modeled using a models of the atomic physics of recombination, the geometry and evolution of the universe, and the spectrum of fluctuations at early times.
- Gives constraints on Ω_{Λ} , $\Omega_{\rm m}$, $\Omega_{\rm B}$, t_0 , ...

Homework

For next class: problem 9.3