
  

Dead Stars

• End of nuclear burning 
• Supernova explosions

–  Formation of elements (R, S process)

• Chandrasekhar limit on white dwarf mass
• Neutron stars
• Pulsars



  

Nuclear Burning in Stars
• Stars are powered by nuclear burning, which produces the energy 

needed to maintain pressure balance against gravity.

• Initial reaction is proton burning to He.

• At end of life for a solar mass star, final step is He burning.

• He burning:  4He + 4He + 4He → 12C + γ ( 7.275 MeV)

– Reaction occurs through 4He + 4He → 8Be + γ , but 8Be has 
lifetime of only 10-16 seconds.

• He burning also produces O and N

–  4He + 12C → 16O + γ 

–  4He + 16O → 20N + γ 

• When conditions no longer allow He burning, nuclear fusion 
stops. Have a white dwarf – pressure support is from “electron 
degeneracy pressure” instead of pressure due to thermal motions.



  

End of Nuclear Burning

• There is a limit to the mass that electron degeneracy pressure 
can support, called the Chandrasekhar limit (1.4 solar masses).

• If gas is accreted onto a white dwarf, then this limit can be 
exceeded and the white dwarf collapses.

• This produces a supernova explosion.



  

Nuclear Burning in Massive Stars

• Core temperature and density is higher in high mass stars

– Nuclear burning can progress past CNO.

• 16O + 4He → 20Ne + γ

• 12C + 12C produces mostly 20Ne and 24Mg.

• 16C + 16C produces mostly 28Si and 32S.

• Si burns to 56Fe and some 52Cr.

• Leads to shell structure.

• Burning is very rapid

– C ~ 500 years

– Si ~ 1 day



  

Fusion

• Burning stops releasing energy with Fe because it is the most 
tightly bound nucleus.



  

Core Collapse

• Core can no longer support itself by nuclear burning.

• Core collapses, new energy source is gravitational 
contraction.

• High temperature and density lead to:

• Nuclear photodisintegration:

– γ +  56Fe → 13(4He) + 4n (-124 MeV)

– γ + 4He → 2p + 2n (-28.3 MeV)

• Neutronization:

– e- + p  → n + ν
e
  

– e- + 56Fe  → 56Mn + ν
e
  

– e- + 56Mn  → 56Cr + ν
e
  



  

Core Collapse

• Energy loss ~ (124 + 13×28.3) MeV/56 ~ 8.8 MeV/nucleon.

• For Chandrasekhar mass of 1056 nucleons, release 1052 erg.

– Compare with solar luminosity of 4×1033 erg/s.

• Energy is released as neutrinos, leaves the star.

• Core collapses on close to free-fall time scale

– Core density at end of Si burning ρ ~ 109 g/cm3.

– Free-fall time scale (3π/32Gρ)1/2 ~ 0.1 s

• Most of nucleons (99.5%) are converted to neutrons.

– Note free neutron lifetime ~ 886 seconds.

• Tremendous release of energy creates a supernova explosion.



Types of Supernovae
• Type I – no hydrogen absorption lines

– Ia – no hydrogen lines, no helium lines, late in decay 
strongest lines are iron

– Ib, Ic – helium lines, still no hydrogen

• Type II – hydrogen absorption lines

• Collapse of massive stars leads to type II and Ib, only 
difference is whether or not star sheds outer hydrogen 
layer before exploding

• Type Ia is thought to be white dwarf exceeding 
Chandrashkar limit either via accretion or merger. Star 
is evaporated and no remnant remains.



Type Ia Supernovae

• Type Ia light curves 
reach the same 
maximum luminosity 
if scaled by width in 
time.

• Makes them useful 
for cosmology.



  

Nucleosynthesis
● Fusion (slow) – Nuclear burning in stars that is energetically 

favorable. Produces the abundant elements up to Fe.

● S-process (slow) - Rate of neutron capture by nuclei is slower 
than beta decay rate. Produces stable isotopes by moving along 
the valley of stability. Occurs in massive stars, particular AGB 
stars.

● R-process (Rapid) – Rate of neutron capture fast compared to 
beta decay. Forms unstable neutron rich nuclei which decay to 
stable nuclei.



  

Valley of 
Stability



In 1987 a nearby supernova gave us 
a close-up look at the death of a 

massive star



Neutrinos from SN1987A

● Supernova 1987A went off in the 
Magellanic Clouds.
● Neutrinos were detected on Earth.



  

Maximum white dwarf mass

Electron degeneracy cannot 
support a white dwarf heavier 
than 1.4 solar masses
This is the “Chandrasekhar limit”
Won Chandrasekhar the 1983 
Nobel prize in Physics



  

How Dense is Quantum?

• Need to use quantum statistics when average separation between 
particles is comparable to the de Broglie wavelength λ = h/p.

• Thermal energy E = p2/2m = (3/2) kT,  find  λ = h(3mkT)-1/2.

– Note λ is larger for electrons, since m
e
 << m

p
.

– Quantum statistics will become important first for electrons.

– Electrons will “become degenerate” first.

• Density ρ = m
p
/(volume per particle) = m

p
/(λ/2)3 = 8m

p
(3mkT/h2)3/2

– Note use m
p
for density, but m

e
 for λ.

• As temperature decreases, gas becomes degenerate



  

Relativistic degenerate gas

• As the density increases, λ becomes smaller, and p increases.

• Eventually electrons are relativistic E = pc = hc/λ -1/2.

• Let’s find the equation of state...

• Pressure P ~ energy density ~ E/λ-3 ~ hc/λ-4.

• Still have mass density ρ ~ m
p
/λ3, therefore P ~ hc (ρ/m

p
)-4/3

• Can work out the correct numerical coefficients using the Fermi-
Dirac distribution (result is in the book, not the derivation). 

• Find Chandrasekhar mass on board.



  

Relativistic degenerate gas

• Chandrasekhar mass is 1.46 solar masses.

• Can do same calculation for neutron stars.

– Need to use general relativity because object is so dense.

– Need to extrapolate nuclear equation of state beyond what has 
been measured in the laboratory – makes estimates uncertain.

• Maximum neutron star mass is around 2-3 solar masses.



  

Neutron 
Stars

• Radius ~ 10-15 km
• Contains superfluids



  

Little Green Men

• First pulsar discovered in 1967 with 
pulse period of 1.33 s. Found by 
Jocelyn Bell, her advisor, Anthony 
Hewish, won the Nobel Prize in 
Physics for the discovery in 1974.

• What can make extremely regular 
pulsations?

• Discoverers named object “LGM-1” 
for “Little Green Men”.

• Additional pulsars discovered within 
a year, periods 0.03 s to several 
seconds.



  

Crab Pulsar



  

Spinning Star?

GMm
r 2

mω2r ⇒
GM
r3


4π2

P2
⇒ ρ

3π
P2G

For a rotating object to remain bound, the gravitational force at 
the surface must exceed the centripetal acceleration:

For the Crab pulsar, P = 33 ms so the density must be greater 
than 1.31011 g cm-3.

This exceeds the maximum possible density for a white dwarf, 
requires a neutron star.



  

Magnetic Field

If a solar type star collapses to form a neutron star, while
conserving magnetic flux, we would naively expect

R sun
2 B sun = Rns

2 Bns ⇒
Bns

B sun

≈ 5×109

For the sun, B~100 G, so the neutron star would have a field 
of magnitude ~1012 G.



  

Magnetosphere

Neutron star rotating in vacuum:


B

Electric field induced immediately 
outside NS surface.

E≃
v
c

B

VER 1810~

The potential difference on the scale of 
the neutron star radius:



  

 Light cylinder

Light cylinderOpen
magnetosphere

Radio beam

RL

B 2πRL

P
=c

Field lines inside light cylinder 
are closed, those passing 
outside are open.

Particles flow along open field 
lines.



  

Spin down of a pulsar

Energy  E=
1
2

I ( 2 πν )2

Power  P=−
dE
dt

=4π2 Iν
dν
dt

For Crab pulsar:  = 30/s, M = 1.4 solar masses, R = 12 km, 
and d /dt =  – 3.910-10 s-2.  

Therefore, P = 5 1038 erg/s.

Over a year, the spin rate changes by 0.04%.



  

Dipole Radiation

dE
dt

∝ Ω4 pm
2

Magnetic dipole, pm, will radiate if rotated around misaligned axis.

Equate this to loss of rotational energy:

d
dt

(
1
2

I Ω
2
) = I Ω

4 dΩ

dt
∝ Ω

4
→

d Ω

dt
∝ Ω

3



  

Braking Index

In general can write

where n is the ‘braking index’.

Can estimate n from spin period P and its time derivatives: 

“Characteristic” age of the pulsar is then

Measurements of n range 1.8 to 3.0. 

dΩ

dt
∝ Ω

n

n = 2−
P P̈

Ṗ2

τ =
P

(n−1) Ṗ



  

P P-dot Diagram

If neutron stars have the 
same radius, then B ~ pm,

Using the dipole radiation 
formula, we can find

Bs ∝ (P Ṗ)
1 /2

τ =
P

2 Ṗ



  

Pulsar Glitches
Short timescales - pulsar slow-down rate is remarkably uniform
Longer timescales - irregularities apparent, in particular, ‘glitches’

1010~ 
P

P

for Crab pulsar

Due to stresses and fractures in the crust?



  

Uhuru (1970-1973)

339 sources



  

X-Ray Pulsar Cen X-3

• Pulses occur at intervals of 4.84 seconds and are modulated at 
orbital period of 2.09 days.

• There is an eclipse when companion star blocks X-ray source.



  

Mass Function

• If one can detect spectral lines from the companion, then one 
can measure the binary orbit and constrain the mass of the 
neutron star.

• K = peak velocity of companion,  i = orbit inclination

• ‘Mass function’ is

• Note that book has mass function measured using velocity shifts 
of X-ray source, which gives constraint on mass of companion 
star.

f =
M X

3 sin3 i

(M 0+M X)
2 =

Porb K 3

2πG
< M X



  

Binary 
Pulsars

• Systems with two  
neutron stars permit 
accurate mass 
measurements and 
tests of general 
relativity.

• First such binary was 
found by Hulse and 
Taylor in 1975; they 
won the Nobel prize. 
Double pulsar system 
found in 2006.



  

Binary 
Pulsars

• Hulse and Taylor found that the binary orbit was gradually 
shrinking in a manor consistent with the binary losing energy to 
gravitational waves.

• Gravitational waves finally detected last year, but in a BH-BH 
binary. 



  

Millisecond Pulsars

• There are pulsars with 
very short periods, 
milliseconds.
• How are they produced?

• Faster than the youngest 
pulsars. Also, have long 
characteristic ages and 
low magnetic fields. 
Often found in globular 
clusters.
• Millisecond pulsars are 
thought to be spun-up via 
accretion from a 
companion star.



  

Magnetars

• There are pulsars with 
very high magnetic fields 
(squares) and few second 
periods.
• They also produce giant 
outbursts as ‘soft gamma 
repeaters’ and `anamalous 
X-ray pulsars’.
• Spinning down too 
slowly to power outbursts 
via spin.
• Outburst thought to be 
due to release of magnetic 
energy via starquakes.



  

Galactic Distribution of Pulsars

• Large dots are pulsars with SNR.

– Why all in plane?

• Small dots are other regular pulsars.

– Broader distribution due to velocities up to 1600 km/s.  

• Dots in circles are millisecond pulsars.

– Why wide distribution?
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