Spherical Coordinates and Astrometry

Polar Coordinates

- Radius $=\rho$ (or r)
- Polar angle or z-inclination angle $=\theta$
- Azimuthal angle $=\varphi$

Cartesian coordinates
$x=r \sin (\theta) \cos (\varphi)$

$y=r \sin (\theta) \sin (\varphi)$
$z=r \cos (\theta)$

Relation to Celestial Coordinates

- Right ascension (α) = azimuthal angle (φ)
- Declination (δ) = $\pi / 2$ - polar angle (θ)
- Radius?

How to find angular distance between two stars?

How to find angular distance between two stars?

- Dot product: $\vec{a} \cdot \vec{b}=a b \cos \gamma$
- Write the position of each star as a unit vector. Reminder: θ the not the same as declination
- Take the dot product of the Cartesian coordinates,

$$
\cos \gamma=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

Spherical Geometry

- All units in arc (radians, degrees..)
- Lower-case letters are subtended arcs from the center.
- Upper-case letters are angles or points on the sphere.
- Triangles have a sum of angles $>180^{\circ}$.
- Spherical law of sines: $\sin (A) / \sin (a)=\sin (B) / \sin (b)=\sin (C) / \sin (c)$

For use in Astrometry Lab

- Find angle B between star C and the North Celestial Pole (a useful angle when deciding how your image is rotated compared to celestial coordinates).
- If we choose A as the NCP, then

$$
\begin{aligned}
& \mathrm{b}=90^{\circ}-\mathrm{C} \text { _Dec } \\
& \mathrm{A}=\mathrm{B}=\mathrm{RA}-\mathrm{C} \text { RA } \\
& \cos \boldsymbol{a}=\overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{C}}
\end{aligned}
$$

- Use spherical law of sines $\frac{\sin B}{\sin b}=\frac{\sin A}{\sin a}$

$$
\sin B=\sin \left(90-C_{\mathrm{Dec}}\right) \frac{\sin \left(B_{\mathrm{RA}}-C_{\mathrm{RA}}\right)}{\sin \left(\cos ^{-1}(\overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{c}})\right)}
$$

