1. A linear transformation from $\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ has eigenvalues and vectors $\lambda_{1}=0.5, \xi_{1}=\binom{0}{1}$ and $\lambda_{2}=3, \xi_{2}=\binom{-1}{1}$.
(a) Sketch, without any calculation, what happens to a vector in the first quadrant of the plane under this linear transformation.
(b) Calculate what happen to a vector $\binom{x}{y}$ under this transformation.
2. Find the eigenvalues and eigenvectors of the linear operation specified by $T=\left(\begin{array}{ccc}-2 & -4 & 2 \\ -2 & 1 & 2 \\ 4 & 2 & 5\end{array}\right)$.

Note that this involves find the roots of a cubic equation. The best way to do that is to make an educated guess for one of the roots (try numbers like $-3,-2, \ldots 3$ since usually happens on exams). Once you find a root r, factor the polynomial into $(\lambda-r)(a \lambda b \lambda+c)$ and use the quadratic equation on the remaining quadratic.
3. We define a basis ε using the basis vectors $\varepsilon_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\varepsilon_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}$ written in the standard basis. The linear transformation L is $L_{\varepsilon}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ when written in the ε basis. What is L when written in the standard basis?
4. The linear transformation A has eigenvalue λ and eigenvector \mathbf{v}. Find one of the eigenvalue and eigenvector pairs for A^{2} in terms of λ and \mathbf{v}.
5. Quantum Mechanics and other subjects make use of a quantity called the matrix exponential.

$$
e^{M}=I+M+\frac{M^{2}}{2}+\frac{M^{3}}{6}+\ldots
$$

If you were given a random n-by-n matrix, then this may be an unwieldy expression. Consider when M is diagonalizable $\left(M=P^{-1} D P\right)$.
(a) Write out the term for M^{2} using the fact that it is diagonalizable and simplify.
(b) What does the M^{3} term look like when you do the same simplification? How about the M^{n} term?
(c) Write the matrix exponential in the form $e^{M}=A e^{D} B$. What are A and B ? Why is this an easier calculation?

