Deaths of stars

- Evolution of high mass stars
- Where were the elements in your body made?
- Stellar remnants
- Degenerate gases
- White dwarfs
- Neutron stars
In high mass stars, nuclear burning continues past Helium.

1. Hydrogen burning: 10 Myr
2. Helium burning: 1 Myr
3. Carbon burning: 1000 years
4. Neon burning: ~10 years
5. Oxygen burning: ~1 year
6. Silicon burning: ~1 day

Finally builds up an inert Iron core.
Why does nuclear fusion stop at Iron?
Fusion versus Fission

Fusion:
- Nuclei of two hydrogen atoms
- Proton
- Neutron

Fission:
- Uranium atom
- Neutron
- Nucleus
- Two smaller nuclei
- Energy

Fusion vs Fission:
- Fusion results in one larger hydrogen nucleus, releasing energy.
- Fission splits the nucleus into two, releasing energy.
Fusion in massive stars makes elements like Ne, Si, S, Ca, Fe
Core collapse

- Iron core is degenerate
- Core grows until it is too heavy to support itself
- Core collapses, density increases, normal iron nuclei are converted into neutrons with the emission of neutrinos
- Core collapse stops, neutron star is formed
- Rest of the star collapses in on the core, but bounces off the new neutron star
If I drop a ball, will it bounce higher than it began?
Supernova explosion

A Step 1: The iron core of the red giant collapses

B Step 2: Neutron-rich core rebounds

C Step 3: The shock wave moves outward through the star
1. As a massive star nears its end, it takes on an onion-layer structure. At this point in its evolution the star is hundreds of millions of kilometers in radius; only its inner regions are shown here.

2. Iron does not undergo nuclear fusion, so the core becomes unable to generate heat. The gas pressure drops, and overlying material suddenly rushes in.

3. Within a second, the core collapses to nuclear density. Inward-falling material rebounds off the core, setting up an outward-going pressure wave.

4. Neutrinos pouring out of the developing neutron star propel the shock wave outward, unevenly.

5. The shock wave sweeps through the entire star, blowing it apart.
SN 2011fe in M101 (Pinwheel)
In 1987 a nearby supernova gave us a close-up look at the death of a massive star.
An Unusual Supernova

- SN 1987A appears to have a set of three glowing rings
- Relics of a hydrogen-rich outer atmosphere, ejected by gentle stellar winds from the star when it was a red supergiant.
- The gas expanded in a hourglass shape because it was blocked from expanding around the star’s equator either by a preexisting ring of gas or by the orbit of an as-yet-unseen companion star.
- These rings were ionized by the initial flash of ultraviolet radiation from the supernova.
Neutrinos from SN1987A
Historical Supernovae

- Historically, supernovae were recorded as “guest stars”
- The supernova that produced the “Crab” pulsar went off in 1054 AD and was brighter than Venus. It was recorded by Arab, Chinese, and Japanese astronomers.
- This Anasazi drawing dates from around 1054 AD.
The Crab Nebula in Taurus (VLT KUEYEN + FORS2)

ESO PR Photo 40f/99 (17 November 1999)

© European Southern Observatory
Nearby Supernova

- The Gum Nebula exploded around 9000 B.C.
- At maximum brilliance, the exploding star probably was as bright as the first-quarter moon.
Where do the elements in your body come from?

• Solar mass star produce elements up to Carbon and Oxygen – these are ejected into planetary nebula and then recycled into new stars and planets

• Supernova produce all of the heavier elements
 – Elements up to Iron can be produced by fusion
 – Elements heavier than Iron are produced by the neutrons and neutrinos interacting with nuclei in the supernova explosion
Energy and neutrons in supernova form heavy elements.
Decay of radioactive elements powers supernova after explosion.
How does the life of a high mass star differ from the Sun’s life?

A) It forms much faster
B) It lives a shorter time on the main sequence
C) It makes elements heavier than carbon via fusion
D) When it dies it explodes in a tremendous supernova explosion
E) All of the above
The most massive stars end all fusion with a core composed of

A) carbon
B) neon
C) iron
D) silicon
E) sulfur
How long does the neon fusion stage last in a one solar mass star?

A) 1 year
B) 10 years
C) 1000 years
D) A one solar mass star never fuses neon
After the initial explosion of a massive star, how does a supernova continue to radiate?

A) High-speed winds from the core remains ionize the ejected material.
B) High-energy radiation is emitted from the core remains due to its high temperature.
C) Unstable elements created in the explosion radioactively decay and emit gamma rays.
Pressure and Temperature

• Pressure is the force exerted by atoms in a gas
• Temperature is a measure of how fast the atoms in a gas move

- Hotter \rightarrow atoms move faster \rightarrow higher pressure
- Cooler \rightarrow atoms move slower \rightarrow lower pressure

Do cold balloon demo
Degenerate gas

- Very high density
- Motion of atoms is not due to kinetic energy, but instead due to quantum mechanical motions
- Pressure no longer depends on temperature
- This type of gas is sometimes found in the cores of stars
Pauli exclusion principle

• No two electrons can occupy the same quantum state
Only two electrons (one up, one down) can go into each energy level.
Electron energy levels

- Only two electrons (one up, one down) can go into each energy level.
- In a degenerate gas, all low energy levels are filled.
- Electrons have energy, and therefore are in motion and exert pressure even if temperature is zero.

Degenerate gas: all lower energy levels filled with two particles each (opposite spins). Particles locked in place.
Thermal Pressure:

Depends on heat content

The main form of pressure in most stars

Degeneracy Pressure:

Particles can’t be in same state in same place

Doesn’t depend on heat content
White dwarf

- Core of solar mass star
- Degenerate gas of oxygen and carbon
- No energy from fusion or gravitational contraction
Mass versus radius relation

• For objects made of normal matter, radius tends to increase with mass
Mass versus radius relation

Radius decreases as mass increases
Maximum white dwarf mass

- Electron degeneracy cannot support a white dwarf heavier than 1.4 solar masses
- This is the “Chandrasekhar limit”
- Won Chandrasekhar the 1983 Nobel prize in Physics
What happens to a star more massive than 1.4 solar masses?

A) There aren’t any
B) They shrink to zero size
C) They explode
D) They become something else
Neutron Stars

• Degenerate stars heavier than 1.4 solar masses collapse to become neutron stars
• Formed in supernova explosions
• Electrons are not separate
 – Combine with nuclei to form neutrons
• Neutron stars are degenerate gas of neutrons
Neutron energy levels

- Only two neutrons (one up, one down) can go into each energy level.
- In a degenerate gas, all low energy levels are filled.
- Neutrons have energy, and therefore are in motion and exert pressure even if temperature is zero.
- Neutron star are supported by neutron degeneracy.
Neutron Star
Mass vs Radius

Radius decreases as mass increases
Neutron Stars

• Very compact – about 10 km radius
• Very dense – one teaspoon of neutron star material weighs as much as all the buildings in Manhattan
• Spin rapidly – as fast as 600 times per second
• High magnetic fields – compressed from magnetic field of progenitor star
Spin up of neutron star

Collapse of star increases both spin and magnetic field
Pulsars

Discovered by Jocelyn Bell in 1967.

Her advisor, Anthony Hewish, won the Nobel Prize in Physics for the discovery in 1974.
Pulsars

Energy source is spin down of neutron star.

Must lie along pulsar beam to see pulsed signals.
Magnetars

Magnetic fields so strong that they produce starquakes on the neutron star surface.

These quakes produce huge flashes of X-rays and Gamma-rays.

Energy source is magnetic field.
X-Ray Pulsars

Neutron star in binary system with a normal star
High magnetic field neutron stars make regular pulsations. Energy source is gravitational energy of infalling matter.
X-ray Bursters

1. Material from a star accretes onto a companion neutron star.

2. When enough accreted material builds up, thermonuclear reactions occur on the neutron star’s surface, creating a burst of X rays.

3. The X-ray burster fades within seconds.
X-ray Burst

Low magnetic field neutron stars make X-ray bursts. Source of energy is nuclear burning.
A pulsar is a rapidly rotating

A) White dwarf
B) Neutron star
C) Black hole
D) Any of the above
Review Questions

• How does the evolution of a high mass star differ from that of a low mass star?
• How can the age of a cluster of stars, all formed at the same time, be determined?
• Why does fusion stop at Iron?
• How are heavy elements produced?
Review Questions

• What is the Fermi exclusion principle?
• Does a more massive white dwarf have a larger or smaller radius than a less massive one?
• What is the maximum mass of a white dwarf?
• What are some of the properties of neutron stars?
• Why do many neutron stars spin rapidly?
• In what different forms does one find neutron stars?