Hubble showed that certain “nebulae” are actually whole galaxies by

A) measuring the distance to them
B) showing that they have spiral arms like the Milky Way
C) measuring their recession speed
D) measuring their mass
Most of the normal matter in clusters of galaxies is

A) in stars within the galaxies
B) in hot gas between the galaxies
C) in cool gas within the galaxies
D) in black holes at the centers of the galaxies
The Universe

• Assumption in cosmology
• Why is the night sky dark?
• Hubble expansion
• The Big Bang
• Geometry of the Universe
• Cosmic microwave background
Assumptions in Cosmology

Copernican principle:

– We do not occupy a special place.
– There are no special places.
– The universe is homogeneous if viewed at sufficiently large scales.
– The laws of physics are the same everywhere.

• Can we test the Copernican principle?
How can we test the Copernican principle?

• Does the Universe look the same in all directions? (Isotropy)
• Are the spectral lines from atoms the same in distant galaxies?
• Do the same laws of gravity apply in other galaxies?
Why is the night sky dark?
(Olber’s Paradox)

• Or what is the temperature of the sky?
• Assume universe is static, infinite, and full of stars like the Sun.
• Then every ray extending out from the Earth will eventually intersect a star.
• So, the brightness of the sky at that point will be determined by the surface temperature of that star.
• So, any where we look, the sky should be as bright as the Sun.
Why is the night sky dark? (Olber’s Paradox)

• One of the assumptions (static, infinite, and full of stars like the Sun) must be incorrect.

• Thus, to have a dark night sky, the Universe must be some combination of

 • dynamic
 • finite in time
 • finite in extent
Doppler effect for light
Distances and velocities of galaxies

- If you measure the distances to a large set of galaxies and also measure the speed of the galaxies using the redshift, what do you find?
Light from distant galaxies is redshifted
Hubble expansion

velocity = $H_0 \times \text{distance}$

The straight line that best fits the data corresponds to $H_0 = 71 \text{ km/s/Mpc.}$
What would be the recession speed of a galaxy at a distance of 7 Mpc?

A) 0.1 km/s
B) 10 km/s
C) 245 km/s
D) 490 km/s
E) 980 km/s

Speed = $H_0 \times \text{distance}$ \quad H_0 = 70 \text{ km/s/Mpc}
What would be the recession speed of a galaxy at a distance of 14 Mpc?

A) 0.1 km/s
B) 10 km/s
C) 245 km/s
D) 490 km/s
E) 980 km/s

Speed = $H_0 \times \text{distance}$ \hspace{1cm} H_0 = 70 \text{ km/s/Mpc}
Expansion of the Universe

A Raisin bread dough before rising

B Raisin bread dough after rising
Motion at constant speed

\[\text{distance} = \text{velocity} \times \text{time} \]

\[\text{velocity} = 0.5 \text{ cm/s} \]

\[\text{time} = \frac{\text{distance}}{\text{velocity}} = \frac{3 \text{ cm}}{(0.5 \text{ cm/s})} = 6 \text{ s} \]
When were galaxies in the same place?

\[\text{time} = \frac{\text{distance}}{\text{velocity}} \]

\[= \frac{7 \text{ Mpc}}{0.508 \text{ Mpc/Gyr}} = 13.8 \text{ Gyr ago} \]
Hubble expansion $\nu = H_0d$

Time = distance/velocity

$= d/H_0d$

$= 1/H_0$

$= 1/(71 \text{ km/s/Mpc})$

$= 13.8 \text{ Gyr}$
The Expanding Universe

- As the universe expands, the space between adjacent galaxies increases.
- The greater the original distance between galaxies, the greater the increase in distance.
- The Hubble law arises from the expansion of space itself.

<table>
<thead>
<tr>
<th>Original distance (Mpc)</th>
<th>Later distance (Mpc)</th>
<th>Change in distance (Mpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A–B</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>A–C</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>A–D</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>A–E</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>
Cosmological Redshift

- A light wave traveling through an expanding universe “stretches,” that is, its wavelength increases.
- A redshift caused by the expansion of the universe is a cosmological redshift.
- Doppler shifts are caused by an object’s motion through space, whereas cosmological redshift is caused by the expansion of space.
Our Observable Universe

The dashed circle represents our cosmic light horizon, a sphere centered on Earth. Light from objects on this horizon is only now reaching us.

These galaxies lie within our cosmic light horizon, and so are part of our observable universe.

All of the objects that we can see with even the most powerful telescopes lie within our observable universe.

These galaxies lie outside our cosmic light horizon. Their light has been traveling toward us for 13.7 billion years, but they are so far away that the light has not yet reached us. Hence they are outside our present-day observable universe.

Because the universe has continued to expand over the past 13.7 billion years, the radius of our cosmic light horizon is greater than 13.7 billion light-years. The present radius is about 47 billion light-years.
If the Hubble constant were doubled, what would be the recession speed of a galaxy at a distance of 7 Mpc?

A) 0.1 km/s
B) 10 km/s
C) 250 km/s
D) 500 km/s
E) 1000 km/s

\[
\text{Speed} = H_0 \times \text{distance} \quad H_0 = 2 \times 71 \text{ km/s/Mpc}
\]
If Hubble's constant were twice as large as we now think it is, our estimate of the age of the universe would

A) be unchanged
B) increase by a factor of 2
C) increase by a factor of 4
D) decrease by a factor of 2
E) decrease by a factor of 4
Big Bang

• Our conclusion that the Universe actually began at some point in time is based on extrapolating back the observed Hubble expansion of galaxies

• Is there any other evidence?
Big Bang

• The universe is now expanding.
• In the past, the Universe was denser than it is today. Also, the energy density and therefore the temperature was higher.
• If we keep going backwards in time, the density and temperature must have been extremely high.
• Some sort of tremendous event caused this extremely hot, ultra-dense matter to begin the expansion that continues to the present day.
• This event, the **Big Bang**, marks the start of our Universe.
Temperature

• Temperature measures how fast atoms in a gas move

 • Hotter
 → atoms move faster
 → higher energy density

 • Cooler
 → atoms move slower
 → lower energy density

Anything will melt if the temperature is high enough
Big Bang

If the Universe was smaller in the past, but had roughly the same amount of matter and energy, then the density of matter and energy must have been higher in the past.
History of the Universe
First protons and neutrons at about 1 second. Helium nuclei formed at about 100 seconds. Observed ratio of Helium/Hydrogen matches Big Bang prediction. Universe is opaque.
At one million years, electrons combine with nuclei and atoms form. Universe becomes transparent – this is called “Recombination”.
(a) Before recombination:
- Temperatures were so high that electrons and protons could not combine to form hydrogen atoms.
- The universe was opaque: Photons underwent frequent collisions with electrons.
- Matter and radiation were at the same temperature.

(b) After recombination:
- Temperatures became low enough for hydrogen atoms to form.
- The universe became transparent: Collisions between photons and atoms became infrequent.
- Matter and radiation were no longer at the same temperature.

Photons present at recombination can travel extent of the Universe
Radiation is a blackbody spectrum originally emitted at 3000 K but red shifted by a factor of 1000.
Discovered by Arno Penzias and Robert Wilson in 1960s while at AT&T and attempting to find the source of noise in an antenna used to bounce telephone signals off metallic balloons high in the atmosphere.

The whole sky glows with at a temperature of 3 K.

They won the Nobel prize in 1978.
There are small variations in the temperature of the cosmic background across the sky. Cooler spots show where the early universe was slightly denser than average.
Three pieces of evidence for the Big Bang model

- Hubble expansion: galaxies are moving away from us with speed proportional to distance.
- The ratio of Helium to Hydrogen in gas clouds unaffected by stars matches with that predicted.
- The cosmic microwave background: a 2.7 K glow seen in all directions.
Review Questions

• In a universe that is expanding more quickly, will the slope of a Hubble plot be steeper or shallower?

• Why does our observable universe get larger over time?

• The early universe was filled with high-energy, short-wavelength photons. Why are these observed today to be low-energy, long-wavelength microwave photons?