Contents of the Universe

- Stars
- Milky Way
- Galaxies
- Clusters

A Typical Star

Radio emission 🥱

Coronal loops

Radio radiations JJ

Energetic particles

X and γ radiations

X radiations

Properties of Stars

- Mass, radius, density, surface temperature, core temperature
- "Vogt-Russell" theorem: the mass and chemical composition of a star determine all of its other properties and its evolution over its entire life. For example, the Stefan-Boltzmann law relates luminosity, temperature, and size:

$$L = 4\pi R^2 \sigma T^4$$

HR diagram

Sizes of Stars on an HR Diagram

- We can calculate R from L and T.
- Main sequence stars are found in a band from the upper left to the lower right.
- Giant and supergiant stars are found in the upper right corner.
- Tiny white dwarf stars are found in the lower left corner of the HR diagram.

Mass-Luminosity relation on the

Movement on HR diagram

Normal versus degenerate gases

- Normal gas
 - Pressure is the force exerted by atoms in a gas
 - Temperature is how fast atoms in gas move
- Degenerate gas
 - Motion of atoms is not due to kinetic energy, but instead due to quantum mechanical motions – al the lower energy levels are filled due to Fermi exclusion
 - Pressure no longer depends on temperature

Degenerate gas: all lower energy levels filled with two particles each (opposite spins). Particles **locked** in place.

Main Sequence Evolution

- Fusion changes $H \rightarrow He$
- Core depletes of H
- Eventually there is not enough H to maintain energy generation in the core
- Core starts to collapse

Red Giant Phase

- He core
 - No nuclear fusion
 - Gravitational contraction produces energy
- H layer
 - Nuclear fusion

Envelope

- Expands because of increased energy production
- Cools because of increased surface area

Red Giant after Helium Ignition

- He burning core
 - Fusion burns He into C, O
 - He rich core

- H burning shell
 - Fusion burns H into He
- Envelope
 - Expands because of increased energy production

Asymptotic Giant Branch

- Fusion in core stops, H and He fusion continues in shells
- Star moves onto Asymptotic Giant Branch (AGB) looses mass via winds
- Creates a "planetary nebula"
- Leaves behind core of carbon and oxygen surrounded by thin shell of hydrogen

Hourglass nebula

White dwarf

- Star burns up rest of hydrogen
- Nothing remains but degenerate core of Oxygen and Carbon
- "White dwarf" cools but does not contract because core is degenerate
- No energy from fusion, no energy from gravitational contraction
- White dwarf slowly fades away...

Multiple Shell Burning

 Advanced nuclear burning proceeds in a series of nested shells

© 2006 Pearson Education, Inc., publishing as Addison Washer

Why does fusion stop at Iron?

© 2006 Pearson Education, Inc., publishing as Addison Wesley

Supernova Explosion

© 2006 Pearson Education, Inc., publishing as Addison Wesley

- Core degeneracy pressure goes away because electrons combine with protons, making neutrons and neutrinos
- Neutrons collapse to the center, forming a **neutron star**

Core collapse

- Iron core is degenerate
- Core grows until it is too heavy to support itself
- Core collapses, density increases, normal iron nuclei are converted into neutrons with the emission of neutrinos
- Core collapse stops, neutron star is formed
- Rest of the star collapses in on the core, but bounces off the new neutron star (also pushed outwards by the neutrinos)

Supernova explosion

			Key	•													
H Hydrogen 1.00794			1 N Magn 24.	2	Atom Elem Elem Atom	iic numbe ent's syn ent's nar iic mass*	er nbol ne										He Helium 4.003
3 Lithium 6.941 11 Na	4 Be Beryllium 9.01218 12 Mg		*Ator weig in pr	mic mas hted ave oportion	ses are fra erage of a to the abi	actions b tomic ma undance	5 B Boron 10.81 13 AI	6 C Carbon 12.011 14 Si	7 N Nitrogen 14.007 15 P	8 Oxygen 15.999 16 S	9 F Fluorine 18.988 17 CI	10 Ne Neon 20.179 18 Ar					
Sodium 22.990 19 K Potassium 39.098	Aagnesium 24 305 20 Ca Calcium 40 08	21 Sc Icandium 44 956	22 Ti Titanium 47.88	23 V Vanadium 50 94	24 Cr Chromium 51 996	25 Mn Manganese 54 938	26 Fe Iron 55.847	27 Co Cobalt	28 Ni Nickel 58.69	29 Cu Copper 63.546	30 Zn Zinc 65.39	Aluminun 26.98 31 Gallium 69.72	Silicon 28.086 32 Germanium 72.59	Phosphorus 30.974 33 As Arsenic 74.922	Sulfur 32.06 34 Selenium 78.96	Chlorine 35.453 35 Br Bromine 79.904	Argon 39.948 36 Fr Krypton 83.80
37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.9059	40 Zr Zirconium 91.224	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silver	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.75	52 Te Tellurium 127.60	53 I lodine 126.905	54 Xe Xenon 131.29
55 Cs Cesium 132.91	56 Ba Barium 137.34		72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 Os Osmium 190.2	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold	80 Hg Mercury 200.59	81 Ti Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
Francium (223)	Ra Radium 226.0254		Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bh Bohrium (262)	Hassium (265)	Mt Meitnerium (266)	Ununnilium (269)	Unununium (272)	Ununbium (277)						
		Lanthanide Series															
			57 La Lanthanum 138.906	58 Ce Cerium 140.12	59 Pr Praseodymium 140.908	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.925	66 Dy Dysprosium 162.50	67 Ho Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.934	70 Yb Ytterbium 173.04	71 Lu Lutetium 174.967
			Actinide	Series	3												
			89 Ac Actinium	90 Th Thorium	91 Pa Protactiniu	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium

Energy and neutrons released in supernova explosion enable elements heavier than iron to form, including Au and U

(243)

(247

(247

(252)

(244)

232.032

Classifying Galaxies

Interacting galaxies

Hubble expansion $v = H_0 d$

Quasar optical spectrum

3C273

The quasar 3C273 is 2.6 billion light years away.

It looks dim, but must be extremely luminous to be visible as such distance.

The luminosity of 3C273 is more than one trillion times the entire energy output of our Sun, or 100 times the luminosity of our entire galaxy.

Year

B

1 ly-

→ To Earth→

Size places a limit on how fast an object can change brightness.

Conversely, rapid variations place a limit on the size of the emitting object.

Quasar jets

Optical core \rightarrow

Coma cluster of galaxies

Coma cluster in X-rays

Coma cluster

- X-ray emitting gas is at a temperature of 100,000,000 K.
- The total X-ray luminosity is more than the luminosity of 100 billion Suns.

• From this, the amount of X-ray emitting gas can be calculated. The mass of X-ray emitting gas is greater than the mass in all the stars in all the galaxies in the cluster.