Gamma-Ray Bursts

- Burst energies, relativistic fireball, beaming
- Swift
- Long GRBs, SN, collapsars
- Short GRBs and mergers
- Low luminosity GRBs and soft gamma repeaters

Redshift and Apparent Energy Distribution

$L_{\gamma}\left(\operatorname{ergs~s}^{-1}\right)=4 \pi \mathrm{~d}_{\mathrm{L}}^{2} v \mathrm{~F}_{\mathrm{v}}\left(\operatorname{ergs~cm}^{-2} \mathrm{~s}^{-1}\right)$ (definition)
$\mathrm{E}_{\gamma} \quad(\mathrm{ergs})=\Delta \mathrm{t}_{\text {obs }} \mathrm{L}_{\gamma} /(1+\mathrm{z})=4 \pi \mathrm{~d}_{\mathrm{L}}^{2}\left(\nu \mathrm{~F}_{\mathrm{v}}\right) \Delta \mathrm{t}_{\text {obs }} /(1+\mathrm{z})$

Compactness Problem

- Take $\mathrm{E} \sim 10^{53}$ erg and $\Delta \mathrm{t} \sim 10 \mathrm{~ms} \rightarrow \mathrm{R}<\mathrm{c} \Delta \mathrm{t}$
- For thermal radiation the energy density is $u=4 \sigma T^{4} / c$, find $T^{4}>\mathrm{E} / 4 \sigma c^{2} \Delta \mathrm{t}^{3}$
- Thus, $T>2 \times 10^{10} \mathrm{~K}$ and $\mathrm{kT}>2 \mathrm{MeV}$ This is high enough to produce e+e- pairs.
- Optical depth $\sim \sigma_{\mathrm{T}} n R \gg 1$ so spectrum should be blackbody.
- But, observed spectrum is power-law meaning the source is optically thin.

Relativistic outflow

- Matter flowing outwards with velocity v
- Lorentz factor of bulk motion is $\Gamma, \Gamma^{2}=1 /\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)$
- Observed photon energy is a factor Γ higher than the photon energy in the rest frame
- For spectrum with an energy index Γ this reduces the number of photon pairs above the electron-positron threshold by $\Gamma^{-2 \alpha}$
- Size of the emitting area can be larger.

$$
\Delta t=\Delta \tau-(v / c) \Delta \tau \rightarrow R=2 \Gamma^{2} \mathrm{c} \Delta t
$$

- Need $\Gamma>100$ to solve the problem

GRB FIREBALL MODEL

 produce GRB

Even later, external shocks produce afterglow

Monochromatic Break in Light Curve

Beaming

Assume that GRB is an explosion expanding out at relativistic velocities.

Because of relativistic motion, radiation is beamed with an opening angle $\sim 1 / \Gamma$

Therefore, observer can see only a limited piece of an expanding shell

At Early time: $\Gamma^{-1} \leq \theta$

As expansion slows: $\Gamma^{-1} \geq \boldsymbol{\theta}$

Jet Breaks

- Beaming fraction is determined by jet opening angle $=1-\cos \theta \approx \theta^{2} / 2$
- Energy required is reduced by a factor $\theta^{2} / 2$

Swift

BAT - CZT detector with $5200 \mathrm{~cm}^{2}$ area sensitive in $15-150 \mathrm{keV}$ band.

Coded aperture imaging of 1.4 steradian field with 4 arcmin resolution suing 32768 pixels.

After detecting a burst, Swift autonomously repoints bringing the burst into view of the XRT and UVOT, often within 90 seconds.

XRT - focusing X-ray telescope in $0.5-6 \mathrm{keV}$ band, 2.5 arcsecond source location accuracy.

UVOT - focusing UV/optical telescope.

Swift Results

- Launched in 2004, detects about 100 bursts/year
- Increased red shift range

GRB 090423 with $z=8.2$, Swift $<z>=2.7$ versus pre-Swift $<z>=1.2$

- Huge sample of afterglow X-ray/optical light curves with excellent coverage Afterglow light curves far more complex than anticipated.

Jet breaks in only 20% of GRBs (coverage for 40% incomplete)

- More data on long GRB/SN connection
- Afterglow of short GRB
- Low luminosity GRBs

GRB 060218 = SN 2006aj

More on GRB/SN connection

- Type of SN associated with GRBs established as SN Ic - core collapse SN with absence of H, He, Si absorption lines
- SNR-SNe also show high speed ($v \sim 0.1 c$) outflows
- Do all SN Ic make GRBs?
- At late times, fire ball should produce unbeamed radio emission. Radio survey of SN Ic shows that not every (or even most) SN Ic harbors a GRB
- Most SN Ic have no relativistic ouflows
- Some have mildly relativistic outflows (SN 2009bb), but no gamma-rays
- Some have highly relativistic outflows

Supernovae/GRB connection

Supernovae/GRB connection

Relativistic blast parameter

Massive Star Collapse

Massive star collapses, forming NS or BH
Matter briefly forms accretion disk around compact object
Accretion disk produces collimated relativistic outflow along spin axis
Beamed outflow makes GRB, supernova explosion accompanies

Short GRBs

Short GRBs associated with elliptical galaxies. left: GRB 050509B; $\mathrm{z}=0.226$ (Gehrels et al. 2005; Bloom et al. 2006a), the red and blue circles are BAT and XRT error boxes, respectively; Right: GRB 050724; z=0.257 (Barthelmy et al. 2005b; Berger et al. 2005a)

Host Galaxies of Short GRBs

GRB050813

GRB050709

GRB050724

GRB050906

Properties of Short GRBs

GRB	X- RAY?	OPTICAL?	RADIO?	REDSHIFT	GALAXY	ENERGY erg
050509	YES	NO	NO	$0.225 ?$	ELLIPTICAL?	$1.1 \times 10^{48} ?$
050709	YES	YES	NO	0.1606	EARLY	2.8×10^{49}
050724	YES	YES	YES	0.257	ELLIPTICAL	9.9×10^{49}
050813	YES	NO	NO	$0.722 ?$	$?$	$1.7 \times 10^{50} ?$
050906	NO	NO	NO	$0.03 ?$	BLUE, SPIRAL	$1.2 \times 10^{47} ?$

- Found in both elliptical and star forming galaxies
- No evidence for supernova emissions
- Offset from host galaxy

Properties of Short GRBs

GRB	Mission	T90(s)	z	Host galaxy	Location	Refs
050509B	Swift	0.04 ± 0.004	0.226	elliptical	outskirts?	[1, 2]
050709	HETE	0.07 ± 0.01	0.1606	irregular	outskirts	[3-5]
050724	Swift	3.0 ± 1.0	0.257	elliptical	outskirts	[6-9]
050813	Swift	0.6 ± 0.1	-	-	-	[10]
050911*	Swift	~ 16	0.1646 ?	galaxy cluster?	-	[11, 12]
051210	Swift	1.4 ± 0.2	-	-	-	[13]
051221A	Swift	1.4 ± 0.2	0.5465	star forming galaxy	slightly off-center	[14, 15]
051227*	Swift	8.0 ± 0.2	-	-	slighty oftcent	$[16,17]$
060121	HETE	4.25 ± 0.56	1.7? or 4.6 ?	early-type?	outskirts?	[18-20]
060313	Swift	0.7 ± 0.1	-	-	-	[21]
060502B	Swift	0.09 ± 0.02	$0.287 ?$	early-type?	outskirts?	[22, 23]
060505	Swift	4.0 ± 1.0	0.089 ?	star-forming galaxy	-	[24-26]
060614*	Swift	102 ± 5	0.125	star-forming galaxy	off-center	[27, 28]
060801	Swift	~ 0.50	1.1304??	-	-	[29, 30]
061006	Swift	~ 0.42	-	-	-	[31, 30]

Short hard GRBs are different class than Long-duration GRBs on the basis of:
Host galaxies
Energies
Redshift distribution
Lag-luminosity relation

Hyperaccreting Black Holes

Mergers

Binaries must evolve before merger and binaries have non-zero speeds due to kicks in compact object formation.

Thus, GRBs can occur in outskirts of or even far from host galaxy.

Low Luminosity GRBs

GRB 980425: $\mathrm{z}=0.0085$
GRB 060218: $z=0.0331$
Zhang (2007)

LLGRBs as a Separate Population

Event rate density: long GRBs $\sim 1 / \mathrm{Gpc}^{3}$-yr versus LLGRBs: $\sim 800 / \mathrm{Gpc}^{3}$-yr Redshift and luminosity distribution suggest a separate population

