# Cosmic Distances

- How to measure distances
- Primary distance indicators
- Secondary and tertiary distance indicators
- Recession of galaxies
- Expansion of the Universe

#### Which is **not** true of elliptical galaxies?

A) Their stars orbit in many different directionsB) They have large concentrations of gasC) Some are formed in galaxy collisionsD) The contain mainly older stars

#### Which is **not** true of galaxy collisions?

- A) They can randomize stellar orbits
- B) They were more common in the early universe
- C) They occur only between small galaxiesD) They lead to star formation



# Stellar Parallax

As the Earth moves from one side of the Sun to the other, a nearby star will seem to change its position relative to the distant background stars.

d = 1 / p

d = distance to nearby star in parsecs

*p* = parallax angle of that star in arcseconds

#### Stellar Parallax

• Most accurate parallax measurements are from the European Space Agency's Hipparcos mission.

• Hipparcos could measure parallax as small as 0.001 arcseconds or distances as large as 1000 pc.

• How to find distance to objects farther than 1000 pc?



# Flux and Luminosity

- Flux decreases as we get farther from the star like 1/distance<sup>2</sup>
- Mathematically, if we have two stars A and B

$$\frac{\text{Flux}_{A}}{\text{Flux}_{B}} = \frac{\text{Luminosity}_{A}}{\text{Luminosity}_{B}} \left(\frac{\text{Distance}_{B}}{\text{Distance}_{A}}\right)^{2}$$





#### Standard Candles

- 1. Measure the distance to star A to be 200 pc.
- 2. Measure the flux of star A.
- Measure the flux of star B, which is known to have the same luminosity as star A, to be lower by a factor of 1600 (or the flux of A is 1600 times the flux of B).
- 4. Find the distance to star B.



Distance<sub>B</sub>= $40 \times 200 \text{ pc} = 8000 \text{ pc}$ 

#### Distances to galaxies

Standard candles, such as Cepheid variables, the most luminous supergiants, globular clusters, H II regions, and supernovae in a galaxy, are used in estimating intergalactic distances.



# The Distance Ladder



- Each stage in the ladder overlaps the previous and next
- Cepheid distances are critical
- Tully-Fisher, fundamental plane apply to whole galaxies
- Supernova are now the best estimators at large distances

A Cepheid variable star is 900 times dimmer but has the same period as another Cepheid which is 100 pc away. How far is it?

- A) 100 pc
- B) 3000 pc
- C) 90,000 pc
- D) Really far

# Doppler effect for light





# Light from distant galaxies is redshifted



# Distances and velocities of galaxies

• If you measure the distances to a large set of galaxies and also measure the speed of the galaxies using the redshift, what do you find?

#### Hubble expansion $v = H_0 d$



What would be the recession speed of a galaxy at a distance of 7 Mpc?

A) 0.1 km/s
B) 10 km/s
C) 245 km/s
D) 490 km/s
E) 980 km/s

Speed =  $H_0 \times distance$   $H_0 = 70 \text{ km/s/Mpc}$ 

What would be the recession speed of a galaxy at a distance of 14 Mpc?

A) 0.1 km/s
B) 10 km/s
C) 245 km/s
D) 490 km/s
E) 980 km/s

Speed =  $H_0 \times distance$   $H_0 = 70 \text{ km/s/Mpc}$ 

#### Expansion of the Universe





#### Motion at constant speed





When were galaxies in the same place? time = distance / velocity = 7 Mpc/(0.508 Mpc/Gyr) = 13.8 Gyr ago

#### Hubble expansion $v = H_0 d$



Time =distance/velocity  $= d/H_0d$  $= 1/H_{0}$ = 1/(71 km/s/Mpc) $= 13.8 \, \text{Gyr}$