Cosmology

- The contents of the Universe
- Einstein's greatest blunder
- Accelerating Universe
- Dark energy

How was the review?

A) Great!
B) Useful
C) OK
D) Could have been better
E) Useless

Contents of the Universe

- Normal matter
 - Stars
 - hot gas
 - anything made of atoms
- Total is 4% of $\rho_{\rm C}$

Rotation curve of Milky Way

Mass of the Milky Way

Dark Matter

- Dark it doesn't produce light (any kind)
- Does have mass, produces gravity
- Nature is unknown
- Most likely it is elementary particles

Contents of the Universe

- Normal matter is 4% of $\rho_{\rm C}$
- Dark matter is 23% of $\rho_{\rm C}$
- Total of normal and dark matter is $\Omega_{\rm M} = 0.3$

- But, we need 100% of $\rho_{\rm C}$
- Remainder, 73%, is dark energy $\Omega_{\Lambda} = 0.7$

Contents of the Universe

What produced the photons that we see as the 3 degree cosmic background radation?

- A) Neutrinos
- B) Hot gas
- C) Stars
- D) Formation of helium nuclei

When did the universe first become transparent?

A) 1 year after the big bang
B) 10³ years after the big bang
C) 10⁶ years after the big bang
D) 10⁹ years after the big bang
E) 10¹² years after the big bang

Einstein and Cosmology

- After Einstein wrote down the equations for General Relativity, he made a model of the Universe and found that the Universe had to be either expanding or contracting.
- He introduced a new term, the cosmological constant or Λ , in his equations representing a energy field which could create antigravity to allow a static model.
- After Hubble found the expansion of the Universe, Einstein called Λ his greatest blunder.

Cosmological Constant

- Quantum physics predicts that some energy fields that act like Λ .
- One such field is the one thought to cause the rapid expansion of the Universe during inflation.
- Another such field appears to be operating today.

Matter slows down expansion

SN2002dd in the Hubble Deep Field North

HST • WFPC2 • ACS

Accelerating Universe

- Hubble expansion appears to be accelerating
- Normal matter cannot cause acceleration, only deceleration of expansion
- Dark energy is required
 - may be cosmological constant
 - may be something else
 - major current problem in astronomy