Thermodynamics [4]

- Change of phase (ice \rightarrow water \rightarrow steam)
- heat, work, and internal energy
- the 1st law of thermodynamics
- the 2nd law of thermodynamics
- order to disorder \rightarrow entropy

Temperature is not the whole story! The temperature at which water boils is 212 F at sea level At higher altitudes where the pressure is lower, water boils at a lower temperature at 5000 ft it boils at 203 F at 7200 ft it boils at 199 F

- if we increase the pressure above atmospheric pressure, water is harder to boil
- · some recipes have high altitude instructions

Analogy to your bank account

- the change in your bank account balance
 - = deposits (\$ in) withdrawals (\$ out)
- the same conservation principle applies to energy transfers → 1st Law of Thermo.

work done by or on a gas

- if a gas does work (expands) its internal energy goes down and so does its temp.
- if work is done on a gas (compressed) its internal energy goes up and so does its temperature
- the internal energy of a gas can be changed by adding or taking away heat or by having the gas do work or doing work on the gas

Change in internal energy	HEAT	WORK
increase	in	0
increase	0	on gas
decrease	out	0
decrease	0	by gas
increase	in	on gas
decrease	out	by gas

all quantities measured in Joules or Calories

EXAMPLE

- What is the change in the internal energy of a gas if 3000 J of heat are added while the gas does 1000 J of work?
- change in internal energy
 - = Heat in work done
 - = 3000 J 1000 J = 2000 J

Heat engines

- A heat engine is a device that uses heat (input, which you must pay for in some form) to do work (output which is useful).
- A central issue is how much of the heat taken in can be converted into work
- The outcome is first of all limited by the 1st law (you can't get more out than goes in)

The 2nd Law of Thermodynamics

- Not all of the heat can be converted into work.
- try to understand the difference between work energy and heat energy
- give the block a push– it will stop due to friction
- the kinetic energy is converted to HEAT
- but, I cannot make the block move by heating it!

Heat - disordered energy

- When an object is heated, the energy of all of its molecules is increased.
- however, the molecules do not all move in the same direction → they move about in all directions → this is what we mean by disordered energy
- on the other hand if we want to get the system to do some work, we want it to move in some particular direction

order to disorder

- All naturally occurring processes go in the direction from order to disorder
- · for example: ice always melts
- ice, the solid state of H₂O is more ordered than water, the liquid state
- in a solid all the molecules are lined up in a regular (ordered) array
- There is far less order in the liquid state

Work is ordered energy, heat is not

- It is possible to tap some of the random energy to do useful work
- when a gas is allowed to expand, some of its random thermal energy is converted into work
- the 2nd law explicitly prohibits all of the heat from being converted into work
- this is just a fact of nature- the way things work!

Order/disorder statement of the 2nd Law of Thermodynamics

- the total disorder of an object is quantified in a parameter called ENTROPY
- in terms of entropy the 2nd law states that the entropy of an isolated object never decreases entropy either stays the same or increases

refrigerators and air conditioners

- Heat engines in reverse
- You can make heat flow backward (cold to hot) only if there is an input of work
- in an air conditioner or refrigerator, this work must be supplied by electricity.