(The actual exam will have 15 questions.)

1. The density of the liquid flowing through the horizontal pipe in the drawing is $1200 \mathrm{~kg} / \mathrm{m}^{3}$. The radius of the pipe at point A is 0.50 m and the radius of the pipe at point B is 0.25 m . If the flow speed at point A is $7 \mathrm{~m} / \mathrm{s}$, what is the difference in pressure, $P_{\mathrm{B}}-P_{\mathrm{A}}$, between points B and A ?

A) $-1.9 \times 10^{3} \mathrm{~Pa}$
B) $+3.8 \times 10^{3} \mathrm{~Pa}$
C) $-2.5 \times 10^{4} \mathrm{~Pa}$
D) $+5.0 \times 10^{4} \mathrm{~Pa}$
E) $-4.4 \times 10^{4} \mathrm{~Pa}$
2. The coefficient of linear expansion of steel is $12 \times 10^{-6} / \mathrm{C}^{\circ}$. A railroad track is made of individual rails of steel 1.0 km in length. By what length would these rails change between a cold day when the temperature is $14^{\circ} \mathrm{F}$ and a hot day at $86^{\circ} \mathrm{F}$?
A) 0.62 cm
B) 24 cm
C) 48 cm
D) 480 cm
E) 620 cm
3. A thermos bottle contains 3.0 kg of water and 2.0 kg of ice in thermal equilibrium at $0^{\circ} \mathrm{C}$. How much heat is required to bring the system to thermal equilibrium at $50^{\circ} \mathrm{C}$?
A) $1.05 \times 10^{6} \mathrm{~J}$
B) $1.30 \times 10^{6} \mathrm{~J}$
C) $1.72 \times 10^{6} \mathrm{~J}$
D) $2.26 \times 10^{6} \mathrm{~J}$
E) $1.13 \times 10^{7} \mathrm{~J}$
4. Complete the following statement: The space between the inner walls of a thermos bottle is evacuated to minimize heat transfer by
A) radiation.
B) conduction.
C) conduction, convection, and radiation.
D) conduction and radiation.
E) conduction and convection.
5. A slab of insulation is made of three layers, as Drawing I indicates. Each of the layers \mathbf{A}, \mathbf{B}, and \mathbf{C} has the same thickness, but a different thermal conductivity. Heat flows through the slab, and the temperatures are as shown. What are the temperatures T_{1} and T_{2} in Drawing II where the layers are arranged in a different order?
A) $T_{1}=230^{\circ} \mathrm{C}$ and $T_{2}=170^{\circ} \mathrm{C}$
B) $T_{1}=200^{\circ} \mathrm{C}$ and $T_{2}=180^{\circ} \mathrm{C}$
C) $T_{1}=220^{\circ} \mathrm{C}$ and $T_{2}=160^{\circ} \mathrm{C}$
D) $T_{1}=180^{\circ} \mathrm{C}$ and $T_{2}=160^{\circ} \mathrm{C}$
E) $T_{1}=210^{\circ} \mathrm{C}$ and $T_{2}=190^{\circ} \mathrm{C}$

6. How many moles are in a $0.53-\mathrm{kg}$ sample of sulphur dioxide, SO_{2} ? (atomic masses: $\mathrm{C}=32 \mathrm{u}$; $\mathrm{O}=16 \mathrm{u}$)
A) 5.2
B) 8.3
C) 48
D) 1.6×10^{4}
E) 5.0×10^{24}
7. At what temperature would one mole of molecular nitrogen $\left(\mathrm{N}_{2}\right)$ have $7.0 \times 10^{3} \mathrm{~J}$ of translational kinetic energy? Note: the atomic mass of N is 14 u .
A) $130{ }^{\circ} \mathrm{C}$
B) $290^{\circ} \mathrm{C}$
C) $480{ }^{\circ} \mathrm{C}$
D) $560{ }^{\circ} \mathrm{C}$
E) $720^{\circ} \mathrm{C}$
8. Enclosed beneath the moveable piston in the drawing is 4.8 moles of a monatomic ideal gas. The gas performs work on the piston as 2300 J of heat are added from the surroundings. During the process, the temperature of the gas decreases by 45 K . How much work does the gas perform?

A) $5.0 \times 10^{3} \mathrm{~J}$
B) $3.2 \times 10^{3} \mathrm{~J}$
C) $1.4 \times 10^{3} \mathrm{~J}$
D) $6.0 \times 10^{2} \mathrm{~J}$
E) $4.4 \times 10^{3} \mathrm{~J}$
9. An ideal monatomic gas undergoes an adiabatic process; and its internal energy decreases by 50 J . Which pair of choices below is correct for this process?
work done heat exchanged
A) 50 J by the system zero joules
B) 50 J on the system
zero joules
C) 50 J by the system

100 J supplied
D) zero joules 50 J removed
E) zero joules 50 J added
10. A heat engine operates in a Carnot cycle between reservoirs of temperatures 1000 K and 400 K. It is found to discharge 20 J of heat per cycle to the cold reservoir. What is the work output per cycle?
A) 10 J
B) 20 J
C) 30 J
D) 40 J
E) 50 J
11. The speed of sound in a certain metal block is $2.00 \times 10^{3} \mathrm{~m} / \mathrm{s}$. The graph shows the amplitude (in meters) of a wave traveling through the block versus time (in milliseconds). What is the wavelength of this wave?

A) 0.5 m
B) 1.5 m
C) 3.0 m
D) 4.0 m
E) 6.0 m
12. A steel wire of mass 0.400 kg and length 0.640 m supports a $102-\mathrm{kg}$ block. The wire is struck exactly at its midpoint causing a small displacement. How long does it take the peak of this displacement to reach the top of the wire?

A) $2.00 \times 10^{-3} \mathrm{~s}$
B) $4.00 \times 10^{-3} \mathrm{~s}$
C) $6.00 \times 10^{-3} \mathrm{~s}$
D) $8.00 \times 10^{-3} \mathrm{~s}$
E) $1.60 \times 10^{-2} \mathrm{~s}$

102 kg
13. The decibel level of a jackhammer is 125 dB relative to the threshold of hearing. Determine sound intensity produced by the jackhammer.
A) $1.0 \mathrm{~W} / \mathrm{m}^{2}$
B) $3.2 \mathrm{~W} / \mathrm{m}^{2}$
C) $4.8 \mathrm{~W} / \mathrm{m}^{2}$
D) $12 \mathrm{~W} / \mathrm{m}^{2}$
E) $88 \mathrm{~W} / \mathrm{m}^{2}$

Answers

1. E
2. C
3. C
4. E
5. C
6. B
7. B
8. A
9. A
10. C
11. D
12. D
13. B
