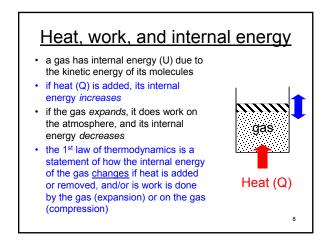


Both temperature and pressure affect the phase changes

- · some recipes have high altitude instructions
- The temperature at which water boils is 212 F at **sea level**
- At higher altitudes, where the pressure is lower, water boils at a lower temperature
 - at 5000 ft it boils at 203 F (95 C)
 - at 7200 ft it boils at 199 F (93 C)
- if we increase the pressure above atmospheric pressure, water is harder to boil



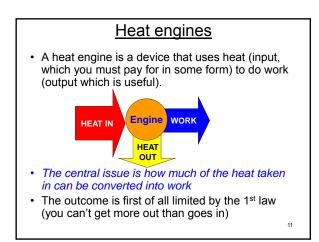
REVIEW

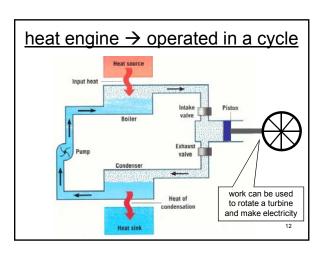
internal energy, temperature, and heat

- The Internal Energy (U) of a system is the sum of the *kinetic energies* of all of its constituents
- <u>Temperature</u> (T) of a system is a measure of the average kinetic energy of its constituents
- <u>Heat</u> (Q) is the energy that is transferred from one system to another because they are initially at *different temperatures*; when the systems reach a common temperature, the flow of heat stops

The First Law of Thermodynamics

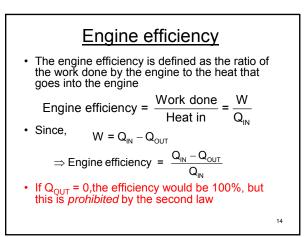
- the change in internal energy of the gas
 the heat *absorbed* by the gas
 minus the work done *by* the gas
- The *change* in internal energy is


$$\Delta U = U_{\text{final}} - U_{\text{initial}}$$


- Then, the 1st Law requires: △ U = Q W, where Q is the heat absorbed by the gas, and W is the work done by the gas.
- The 1st Law of Thermodynamics is a statement of *conservation of energy*

9

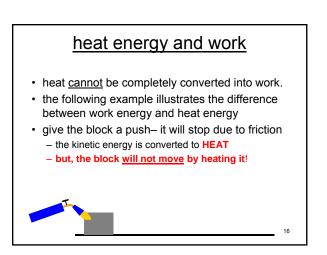
- What is the change in the internal energy of a gas if it takes in 3000 J of heat while it does 1000 J of work?
- change in internal energy
 - $= \Delta U = Q W$
 - = 3000 J 1000 J
 - = 2000 J (increase if ΔU is +)



Cyclic heat engine

- Heat engines are operated in a cycle, which means that the working substance is returned to its original state at the end of the cycle.
- Then, the change in internal energy of the engine is ZERO, i.e., $\Delta U = 0$
- The net heat into the engine is $Q_{NET} = Q_{IN} Q_{OUT}$
- The energy balance for the engine that is set by the 1st Law is then:

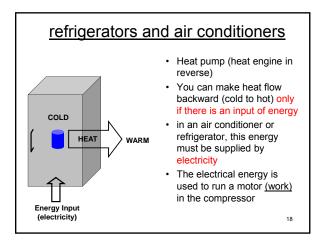
$$\Delta U = 0 = Q_{\text{NET}} - W = (Q_{\text{IN}} - Q_{\text{OUT}}) - W$$


• So that:
$$W = Q_{IN} - Q_{OUT}$$

Second law of thermodynamics

There are 2 statements of the 2nd law which can be shown to be equivalent:

- (Kelvin) It is impossible to have a heat engine that is 100 % efficient.
 → Not all of the heat taken in by the engine can be converted to work
- (*Clausius*) In a spontaneous process, heat flows from a hot to a cold substance
 - ➔ Work must by done to move heat from a cold to a hot substance.



Heat - disordered energy

- When an object is heated, the energy of all of its molecules is increased.
- however, the molecules do not all move in the same direction → they move about in all directions → this is what we mean by <u>disordered</u> (or thermal) energy
- on the other hand, if we want the system to do work, we want it to move in some particular direction (*work is directed energy*)

17

13

order to disorder

- All naturally occurring processes go in the direction from order to disorder
- ice melts when placed in water; it never gets colder and the water gets warmer
- ice, the solid state of H₂O is more ordered than water, the liquid state
- in a solid all the molecules are lined up in a regular (ordered) array; there is less order in the liquid state, and even less in the gaseous state
- when salt is put in water it dissociates; crystals of salt never spontaneously form in a salt water solution

Ice always melts in water

- When ice is placed in a cup of water, it always melts → the water gets colder
- The first law of thermodynamics does not prohibit the ice from getting colder and the water getting warmer
- The first law only requires that energy is conserved
 → heat lost by ice = heat gained by water


20

 The second law specifies the *direction* in which spontaneous processes proceed (hot → cold)

 Order to disorder

 Gas molecules expand to fill a volume

 Image: Second s

Heat engine example
A heat engine, <i>operating in a cycle</i> , absorbs 10,000 J of energy from a heat source, performs work, and discards 6,000 J of heat to a cold reservoir.
(a) how much work is performed?(b) what is this engine's efficiency?(c) what is the change in internal energy of this engine?
solution
 (a) W_{out} = Q_{in}- Q_{out} = 10,000 J - 6,000 J = 4,000 J (b) efficiency = W_{out}/Q_{in} = 4,000/10,000 = 0.4 or 40% (c) ΔU = 0, the change in internal energy for an engine operating in a cycle is zero