
L 23 Electricity & Magnetism [1]

- · Static electricity
 - Why do I get a shock when I walk across the rug and touch the door knob?
 - Why do socks stick to my shirts in the dryer?
 - Why does my hair stick to my comb?
- · What is lightning?
- What produces the aurora?
- What are volts, amps and ohms?
 - What are GFICs (special electrical outlets in the bathroom)
 - Are compact fluorescent lights more efficient?

We will discuss the basic aspects of electricity that will hopefully remove some of the mystery and fear surrounding it.

It's the CHARGE!

Atom

- we know that matter has MASS but . . .
- it also has CHARGE!
- the mass is what gives the gravitational force
- the charge is what gives us Electrical forces
- We don't directly see
 the effects of charge
 because the charge is
 bound inside of atoms
 a

What is in atoms?

- charge is just another property like mass
- Atoms have a nucleus at its center and a electrons that move around it
- The nucleus: two kinds of heavy particles
 - neutrons have no charge
 - protons have a positive charge
- Two kinds of charge: positive and negative
- Electrons and protons have the same magnitude of charge but electrons are – and protons are +
- The mass of the proton is about 2000 times the mass of the electron

Electric forces

- charges exert electric forces on other charges
 - two positive charges repel each other
 - two negative charges repel each other
 - a positive and negative charge attract each other

The repulsive electric force between 2 protons is 10³⁹ times stronger than the attractive gravitational force!

How Strong is the Electric Force between two charges?

- It depends on how big the charges are, and how close they are
 - The bigger the charges, the bigger the force
 - The closer the charges, the bigger the force
- This is known as <u>Coulomb's Law</u>
- The unit of charge is the Coulomb (C)

Coulomb's Law

$$F_e = k_e \frac{Q_1 Q_2}{r^2}$$

5

Conductors and Non- Conductors

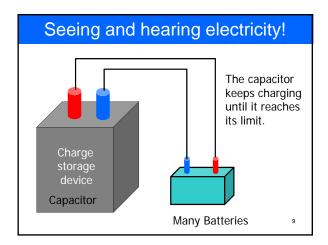
- Metals (copper, aluminum, iron) are conductors of electricity → that means that charge can move through them
- Plastics, wood, ceramics, and glass are nonconductors (or insulators) → they do not let electricity flow through them
- You should **not** stick a metal fork into an electrical outlet!
- You could stick a plastic fork into an outlet without electrocuting yourself
- · Please do not do this!

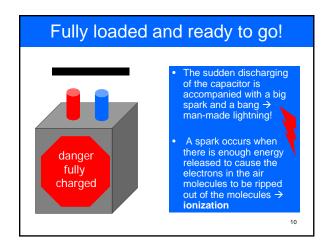
6

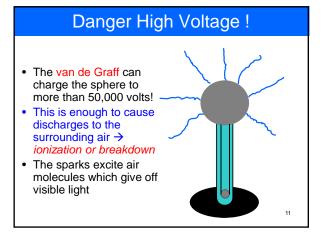
CAUTION

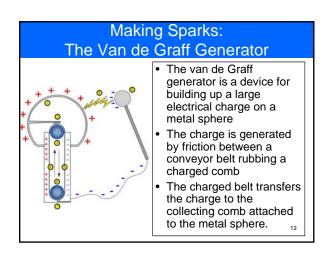
What makes conductors conduct?

- Atoms have equal numbers of positive and negative charges, so that a piece of material usually has no net charge → the plusses and minuses cancel each other.
- However, when you put many metal atoms (like copper) together an amazing thing happens → one electron from each atom forgets which atom it belongs to.
- All the homeless electrons are free to wander about inside the material.


Current— charges moving around


If I connect a battery to the ends of the copper bar the electrons in the copper will be pulled toward the positive side of the battery and will flow around and around.


→ this is called current – flow of charge


Free electron

An electric circuit!

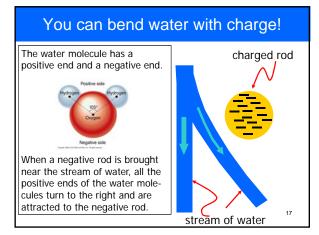
Both conductors *and* non-conductors can be charged!

- Even though non-conductors do not have free electrons wandering about, they can be charged by friction
- When you move your comb through your hair, the friction (rubbing) between the comb and hair can pull some of the electrons out of your hair and onto the comb
- as a result your comb ends up with a net negative charge and attracts your hair which is now positive.

13

Charging by friction - triboelectricity

- If you rub plastic with fur (e.g. cat or rabbit), electrons are rubbed onto the plastic making it negative
- if you rub glass with silk, electrons are rubbed off the glass making it positive
- the charge can be transferred to other objects.


14

The charging process

- an object is charged positive (has a net positive charge) if electrons are removed from it
- an object is charged negative (has a net negative charge) if electrons are transferred to it
- charges can be transferred from conductors or non-conductors but they can only move through conductors
- Charge is conserved in the transfer of charge
 the charge is merely passed from one object to another, no charge is lost in this process.

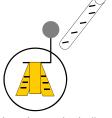
15

Attracting uncharged objects • A negatively charged rod will push the electrons to the far side leaving the near side positive. • The force is attractive because the positive charges are closer to the rod than the negative charges 16

Can attract nonconductors also

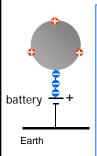
Even though nonconductors do not have free electrons that can move around, the molecules can be polarized – the positive and negative charges can be separated slightly

19


One Coulomb is a HUGE charge

- To get a charge of one Coulomb on an object we would have to remove 6.250 x 10¹⁸ electrons from it!
- In the capacitor discharge demonstration, only 1/100 of a Coulomb was involved.

20


Seeing the effects of charge: the electroscope

- the electroscope is a simple device for observing the presence of electric charge
- it consists of a small piece of metal foil (gold if possible) suspended from a rod with a metal ball at its top

• If a negatively charged rod is placed near the ball, the electrons move away because of the repulsion. The two sides of the metal foil then separate.

Electric Potential → voltage

- The amount of charge on a charged sphere can be measured in terms of its electric potential or voltage
- The more charge that is on the sphere, the higher its voltage or electric potential measured in VOLTS
- If I connect a battery to the sphere, it
 pulls the negative electrons from the
 sphere and deposits them to the
 ground, thus leaving the sphere with a
 net positive charge.

22