L 24 Electricity & Magnetism [2]

- static electricity
 - the charging process
 - -the van de Graff generator
 - -electrostatic shielding
- liquid and gaseous conductors
- lightning
- frogs legs and batteries
- · voltage, current, and resistance

review – electric charge

- Matter has two basic properties
 - mass → gravitational force
 - charge → electric and magnetic forces
 – positive charge
 – negative charge
- electric forces

- electric forces
 - like charges repel +/+ or / unlike charges attract + / -
- charge is measured in Coulombs [C]
- all charge is a multiple of the basic unit of charge \rightarrow e = 1.60217646 x 10⁻¹⁹ C
- charges cannot be divided into smaller units

Where is the charge?

- the charge is bound in atoms
 positive → protons
 - negative \rightarrow electrons
- matter is electrically neutral → it has the same amount of positive and negative charge
- only the electrons can be transferred from one object to another by rubbing (friction)
 - to make an object (-) put electrons on it
 - to make an object (+) remove electrons from it

Charging by friction

- If you rub plastic with fur, electrons are rubbed onto the plastic making it negative
- if you rub glass or plastic with silk, electrons are rubbed off the glass making it positive
- charge can be transferred to other objects
 charge can be transferred to or from conductors or non-conductors
 - charge (electrons) can only move through conductors.
- only the electrons can be transferred and move through conductors

Electrostatic shielding

- The effect of the high voltage on the van de Graff generator stops on the outside of the metal cage → The rabbit is unharmed!
- Being inside your car during a lightning storm offers you some protection
- radio signals cannot penetrate through a metal enclosure
- the metal bars (rebar) that reinforce the concrete walls affects radio transmissions

Liquid and gaseous conductors

- Except for mercury, which is a conducting liquid at room temperatures, the metallic conductors are solids
- Non-conducting liquids can be made conducting by adding ionic substances such as salt or acids
- Gases are non-conducting unless they are ionized (electrons removed from the atoms), then they become good conductors

11

A salt water solution is a conductor

- When salt NaCl (sodium chloride) is added to water H₂O, the NaCl molecule dissociates into a positive ion Na⁺, and a negative ion Cl⁻.
- Thus the solutions contains both positive and negative ions, both of which can conduct electricity.
- Electric current can pass through dirty bath water and through you also!
- we are conductors water + Na⁺ + Cl⁻

13

Gas discharges When a high voltage is applied to a gas-filled tube, the gas becomes ionized → one or more electrons are removed from each atom. The ionized gas is a conductor → current can flow. The excited gas atoms emit light of a characteristic color

applications of electrostatics

- electrostatic attraction to put ink droplets on paper
 - Xerox machines
 - Inkjet printers
 - Paint sprayers
- Sorting particles by charge and weight
- electrostatic precipitators use the attraction of charged dust to remove dust particles from smoke.

16

Batteries and frog's legs

- <u>Galvani</u> found that a frog leg hung on a copper hook twitched when touched by an iron scalpel.
- <u>Volta</u> realized that the frog's leg was just acting as a conductor, and the two metals produced the current --- the first battery
- Volta replaced the frog's leg with brine soaked paper placed between strips of Cu and Zn

Potential difference or Voltage (V)

- Voltage is what causes charges to move in a conductor → it produces an electrical force on the electrons which causes them to move
- Voltage plays a role similar to pressure in a pipe → to get water to flow there must be a pressure difference between the ends, this pressure difference is produced by a pump
- A battery is like a pump for charge → it provides the energy for pushing the charges around a circuit

Inside a Duracell 1.5 Volt battery

