PHYS:1200 FINAL EXAM

- FINAL EXAM: Wednesday December 17, 12:30 P 2:30 P in LR-1 VAN
- FE covers Lectures 23 36
- The study guide, formulas, and practice final exam questions are posted on the Exam Information Link below.
- We will review the practice final exam questions on Wed. Dec. 10, and Friday Dec. 12.

L 36 Modern Physics - 4

- Nuclear physics
 - what's inside the nucleus and what holds it together <-</p>
 - what is radioactivity, half-life \leftarrow
 - carbon dating \leftarrow
- Nuclear energy – nuclear fission
 - nuclear fusion
 - nuclear reactors
 - nuclear weapons

Biological effects of nuclear radiation

- Nuclear reactions can produce alphas, betas, neutrons and gamma radiation (particles or photons)
- Nuclear radiation is ionizing radiation, i.e., energetic enough to knock electrons out of atoms or molecules
- Ionizing radiation is potentially harmful to humans because the ionization it produces can alter significantly the structure of molecules within a living cell which can lead to alterations of the cell (make them cancerous) or to the death of the cell

5

Hazards of radiation

- The hazards of radiation can be minimized by limiting overall exposure
- The effects of absorbed doses or ionizing radiation is measured in a unit called the rem.
- The effects of radiation exposure are
 Short term or acute effects appearing within a matter of minutes of exposure
 - Long-term effects that may appear in years, decades or even in future generations

Average radiation doses received by a US resident		
Source of radiation dose in mrem/yr*	-	
Natural Background radiation		
Cosmic rays28		
Earth and air28		
Internal radioactive nuclei		
Inhaled radon200		
Man-made radiation		
Medical / dental x-rays		
Nuclear medicine14		
*Current federal standards limit exposure to 500 mrem/yr	7	

Radiation sickness

- This is the general term applied to the acute effects of radiation
- A dose less than 50 rem causes no short term ill effects
- A dose of 50 300 rem <u>at one time</u> brings on radiation sickness
- A whole body dose of 400 500 rem is lethal for about 50% of people exposed
- Whole body doses greater than 600 rem results in death for almost all individuals

A lot of energy from a little mass

- The energies released when a large nucleus undergoes fission or small nuclei undergo fusion are enormous compared to chemical energies (e.g. burning fossil fuel)
- When Uranium splits apart about 0.1% of its mass is converted into energy
- Pound for pound, nuclear reactions release about 10 million times more energy than chemical reactions
- 1 pound Uranium → 1 million gallons of gasoline

Reactor or Bomb

- If the energy released in a nuclear chain reaction is allowed to proceed in a controlled way, then this can be used as an energy source → nuclear reactor
- If the chain reaction occurs in an uncontrolled manner then you have
 → atomic bomb
- Enrico Fermi produced the first nuclear reactor under the west stands of Stagg Field at the University of Chicago in 1942

Controlling the nuclear reactor

- To keep the reactor in the critical state the operators adjust the *control rods*
- The control rods can be moved into or out of the reactor core. They contain an element, such as cadmium or boron which absorbs neutrons.
- If the reactor is getting too hot, the control rods are pushed into the core to slow down the chain reaction

19

• The heat generated within the fuel rods is carried away by water surrounding the rods

Reactor core

- To start the reactor, the control rods are pulled out of the core
- To stop the reactor, the control rods are pushed into the core
- Inside a concrete containment vessel

20

Pros and Cons of Nuclear energy		
ADVANTAGES Plentiful fuel no greenhouse gases no poisonous emissions non-polluting efficient power production	DISADVANTAGES	
 US – 1979, Three mile Island, Pennsylvania World- 1986, Chernobyl, Ukraine (80 killed within one week of accident) Japan -2011 caused by Tsunami negative spin – big disaster – no more nuclear power plants positive spin – even with Tsunami, no one killed, build more plants²¹ 		

The atomic (fission) bomb

- a critical mass of fissionable material is needed
- Natural uranium contains ²³⁸U and 0.7% ²³⁵U, but only ²³⁵U is fissionable. In the enrichment process, the ²³⁵U and ²³⁸U are separated. Weapons-grade uranium requires enrichment to > 20%.
- if a critical mass can be achieved than an selfsustained uncontrolled reaction occurs
- To achieve critical mass (60 kg), 2 lumps (7 inch diameter ball) of a non-critical mass of U-235 are brought together quickly using a cannon
- When the U-235 becomes supercritical, a catastrophic fission will quickly turn into a fireball

Effects of a nuclear explosion

- The released neutrons produce the fireball by heating everything around them
- The ultra hot fireball produces an intense flash of light, x-rays and gamma rays
- The explosion creates a huge pressure surge → blast wave that flattens everything within miles of ground zero
- Long after the blast there is the fallout → the creation and release of radioactive nuclei that are carried away in the air

