PHYS:1200:0001

Physics of Everyday Experience

Professor Robert Merlino

course webpage:

http://www.physics.uiowa.edu/~rmerlino/1200_S_15/index.html

this webpage can also be accessed from ICON

PHYS:1200:0001 The Physics of Everyday Experience

- Technology plays a big role in everyday life → computers, smart phones, GPS, etc.
- Technological advances result from applications of scientific discoveries
- In this course we will discover the scientific principles in the everyday experiences and objects around us
- We will see that we can make sense of what is going on around us in terms of a few basic principles of physics

2

COURSE GOALS

- To learn some of the basic concepts of physics by observing some of the common phenomena occurring in everyday life
- To understand the physical concepts behind what makes things work
- To *participate* in science by exploiting our natural curiosity
- To exercise our critical thinking skills
- To appreciate the *quantitative* nature of physical science → numbers matter!
- To recall how to deal with simple formulas to obtain numerical solutions to problems

SOME OF THE QUESTIONS THAT WE WILL BE DISCUSS IN THIS COURSE

- Why do things move?
- Does everything that goes up come down?
- Why does a bicycle stay upright when it's moving but falls when it stops?
- What is the physics behind seatbelts?
- Why doesn't the moon fall into the earth or the earth fall into the Sun?
- Why is it difficult to walk on ice?
- Why does ice melt?

- What is light?
- What is lightning?
- What makes rainbows?
- How can a boat made of steel float?
- Why do my socks stick to my shirts in the clothes dryer?
- Why do I get a shock after I walk across the carpet room and touch a doorknob?
- Why is it a bad idea to plug every appliance into the same outlet?
- How do magnets work?
- How does a compass work?

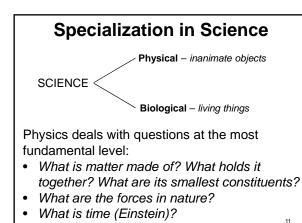
- How do refrigerators work?
- Why can't I cool my room by keeping the refrigerator door opened?
- What is sound?
- Why do I sound funny when I breath helium?
- How is electricity produced?
- What's the difference between DC and AC?
- What is work and energy?
- What do airplanes and curveballs have in common?
- Why do golf balls have dimples?

- How tall does a mirror need to be to see my entire self?
- What is the Greenhouse effect, the ozone layer?
- Is the climate changing? Is it our fault? What's the difference between heat and temperature?
- What is a day, month, year?
- Why is a Jupiter year 12 Earth years?
- How do CAT scans and MRIs work?
- How do you make an atom bomb?

What Physics isn't

- Art
- Philosophy
- Engineering
- Religion
- Math
- Astrology
- Magic
- Boring and impossible to understand
- Done only by mad scientists

What is Physics?


- Physics is the *natural science* that involves the study of matter and its motion through space and time, along with the related concepts such as energy and force.
- More broadly, it is the analysis of nature, conducted in order to understand how the universe behaves, from the largest objects to the smallest.
- A search for patterns or rules (laws) for the behavior of all physical objects

What is the relation of Physics to the other sciences?

The attempt to understand the behavior of everything requires more than one field, so various sub-fields have emerged over time:

- Astronomy
- OceanographyMeteorology
- ChemistryBiology
 - Atm
- Geoscience
- Atmospheric Science
- Environmental Science

10

- The Social Sciences
 Human behavior cannot be understood on the basis of physical or biological science alone.
- We cannot understand people simply by studying the behavior of their atoms and molecules
- The Social Sciences are the disciplines that investigate the social, financial, and political interrelationships among people
 - Sociology
 - Psychology
 - Political science
 - Economics

Where do the laws of physics come from?

- The laws of physics are based on <u>observations</u> (experimentation)
- We must observe nature to understand it
- We look for patterns of behavior
- We quantify these patterns into mathematical statements formulas
- We continually test these "laws" to find the limits of their applicability

13

We revise the "laws" when they fail

How can I do well in this course?

- Download the lecture presentations
- Pay attention to the demonstrations
- Go over the lecture presentations
- Do the review questions and exercises

14