PHYS 1200 Physics of Everyday Experience

Review questions and exercises for Lecture 16 (T-1)

- 1. Explain how Hero's engine converts heat energy into work.
- 2. What is meant by the internal energy of a system?
- 3. What mechanical property of a system does a thermometer measure?
- 4. What is heat energy?
- 5. On which temperature scale is 0 degrees the lowest possible temperature?
- 6. Use the temperature conversion formulas to fill in the following table:

T _F	T _C	T _K
-31		
140		
	- 5	
		0
77		
5		
	- 5	
		73
-40		

- 7. What property of an ideal gas can be used to determine absolute zero?
- 8. (Challenge problem) On the Merlino temperature scale, water freezes at -50 M and boils at +150 M. Find the conversion formula from T_M to T_C . Hint: Assume that the formula can be written as $T_C = a(T_M + b)$, and use the two pairs of temperatures on the M and C scales to find a and b.

Solutions:

- 1. In Hero's engine water is boiled to produce steam. The steam comes out of the cylinder in two streams in opposite directions which makes the pivoted cylinder spin.
- 2. The internal energy of a system is the sum of the kinetic energy of all the molecules in it.
- 3. A thermometer measures temperature which is an indication of the average kinetic energy of the molecules.
- 4. Heat is the energy that flows from one system to another system when their temperatures are different.
- 5. The absolute temperature scale is the Kelvin scale on which 0 K is the lowest possible value.

6.

T _F	T _C	T _K
-31	-35	238
140	60	333
23	- 5	268
-459	-273	0
77	25	298
5	-15	258
23	- 5	268
-328	-200	73
-40	-40	233

- 7. For an ideal gas the pressure is proportional to the temperature. Absolute zero is found by measurement of the pressure as a function of temperature in C and then finding the temperature that is the extrapolation of the line to p = 0.
- 8. $T_C = a(T_M + b) \rightarrow 0 = a(-50 + b)$, and $100 = a(150 + b) \rightarrow b = 50$, $a = \frac{1}{2} \rightarrow T_C = \frac{1}{2} (T_M + 50)$ You should check that this formula works for both the points: $T_C = \frac{1}{2} [-50 + 50] = 0$ C, and $T_C = \frac{1}{2} [150 + 50] = \frac{1}{2} [200] = 100$ C. OK!