PHYS 1200 Physics of Everyday Experience

Review questions and exercises for Lecture 35 (MP-3)

- 1. What are the masses and charges of the particles in the nucleus? What is the nucleus of a hydrogen atom?
- 2. What are the atomic number Z, neutron number N, and atomic mass (or weight) A?
- 3. What are isotopes? Give a few examples.
- 4. What holds the nucleus together?
- 5. Why do stable heavy nuclei have more neutrons than protons?
- 6. What types of particles are emitted by radioactive nuclei?
- 7. What are α 's, β 's, and γ 's?
- 8. How are α 's, β 's, and γ 's affected by a magnetic field?
- 9. How is the "half-life" of a radioactive substance defined?
- 10. What is nuclear activation, and how is it used in cancer therapy?
- 11. What are the numbers of protons and neutrons in the following nuclei:

- (a) $^{215}_{84}Po$ (b) $^{212}_{83}Bi$ (c) $^{60}_{27}Co$ (d) $^{131}_{53}I$ (e) $^{226}_{88}Ra$
- 12. Identify the nuclei having:
 - (a) N = 22, A = 40 (b) Z = 19, N = 21

 - (c) Z = 27, A = 56 (d) N = 64, A = 108

(Consult a periodic table to identify the elements.)

- 13. A radioactive nuclear material is produced in a medical cyclotron device. Initially the sample contains 100,000 radioactive nuclei and 80 s later it contains 250,000 radioactive nuclei. What is the half-life of this nuclei?
- 14. A sample of radioactive nuclei contains 80,000 atoms. If the half-life of the nuclei is 1 day, how many nuclei, on average, will be left after 4 days?
- 15. Uranium-238 decays by emitting an alpha particle. What is the decay product?

Answers and Solutions:

- 1. The nucleus contains protons which have a charge of +1 elementary charges, and neutrons which have no charge. The mass of the proton and the mass of the neutron are nearly the same. The nucleus of a hydrogen atom is a single proton.
- 2. Z is the number of protons, N is the number of neutrons, and A = Z + N.
- 3. Isotopes are nuclei of the same element (same Z) having different numbers of neutrons. For example: deuterium and tritium are isotopes of hydrogen.
- 4. The nuclear force holds the nucleus together.
- 5. Neutrons being uncharged, increase the amount of nuclear force that holds the nucleus together without increasing the repulsive electric force.
- 6. Alphas, betas, and gammas.
- 7. Alpha particles are the nucleus of a helium atom, ${}_{2}^{4}He$, betas are just electrons, and gammas are high energy photons.
- 8. Alphas and betas have electric charge (alpha + 2, and beta –1) so they are deflected in opposite directions by a magnetic field. Gammas have no charge, and therefore are not affected by a magnetic field.
- 9. The half-life is defined as the time for half of the radioactive nuclei in a sample to decay.
- 10. Nuclear activation is a process in which a sample of stable nuclei is exposed to neutrons which cause the nuclei to become unstable. Activated nuclei having a short half-life are injected into a cancerous tumor to kill the cancerous cells.

11. (a)
$$^{215}_{84}Po \rightarrow N = 215 - 84 = 131$$

(b)
$$^{212}_{83}Bi \rightarrow N = 212 - 83 = 129$$

(c)
$$_{27}^{60}Co \rightarrow N = 60 - 27 = 33$$

(d)
$$_{53}^{131}I \rightarrow N = 131 - 53 = 78$$

(e)
$$_{88}^{226}Ra \rightarrow N = 226 - 88 = 138$$

12. (a)
$$Z = 40 - 22 = 18 \rightarrow \text{argon} \rightarrow {}^{40}_{18}Ar$$

(b)
$$Z = 19 --> potassium, A = 19 + 21 = 40 \rightarrow {}^{40}_{19}K$$

(c)
$$Z = 27 \rightarrow \text{cobalt}, N = 56 - 27 = 29 \rightarrow \frac{56}{27}Co$$

(d)
$$Z = 108 - 64 = 44 \rightarrow xenon \rightarrow {}^{108}_{44}Xe$$

- 13. In 80 s, the number of nuclei was reduced by ¼. Therefore 80 s much be twice the half-life, so the half-life must be 40 s.
- 14. A table of the number of nuclei present after each half-life is shown:

Time (days)	Number
0	80,000
1	40,000
2	20,000
3	10,000
4	5000

Thus after 4 days, 5000 nuclei would remain.

15. Uranium has Z = 92, so U-238 $\Rightarrow \frac{238}{92}U$. If this decays by alpha $\frac{4}{2}He$ emission, Z decreases by 2 and A decreases by 4. The element with Z = 90 is thorium, so the decay is $\frac{238}{92}U \rightarrow \frac{234}{90}Th + \frac{4}{2}He$.