L 23 Electricity & Magnetism [1]

- Static electricity
 - Why do I get a shock when I walk across the rug
 - and touch the door knob or another person?
 - Why do socks stick to my shirts in the dryer?
 - Why does my hair stick to my comb?
- What is lightning?
- What produces the aurora?
- What are volts, amps and ohms?
 - What are GFICs (special electrical outlets in the bathroom)
 - Are compact fluorescent lights or LEDs more efficient?

We will discuss the basic aspects of electricity that will hopefully remove some of the mystery and fear surrounding it.

It's the CHARGE!

- we know that matter has MASS but . . .
- it also has CHARGE!
- the mass is what gives the gravitational force
- the charge is what gives us Electrical forces
- We don't directly see the effects of charge because the charge is
 bound inside of atoms

What is in atoms?

- · charge is just another property like mass
- Atoms have a nucleus at its center and a electrons that move around it
- The nucleus: two kinds of heavy particles
 <u>neutrons</u> have no charge
 - protons have a positive charge
- Two kinds of charge: positive and negative
- Electrons and protons have the same magnitude of charge but electrons are – and protons are +
- The mass of the proton is about 2000 times the mass of the electron

How Strong is the Electric Force between two charges?

- It depends on how big the charges are, and how close they are
 The bigger the charges,
- the bigger the force - The closer the charges, the bigger the force
- This is known as <u>Coulomb's Law</u>
- The unit of charge is the Coulomb (C)

What makes conductors conduct?

- Atoms have equal numbers of positive and negative charges, so that a piece of material usually has no net charge → the plusses and minuses cancel each other.
- However, when you put many metal atoms (like copper) together an amazing thing happens → one electron from each atom forgets which atom it belongs to.
- The homeless electrons are free to wander about randomly inside the material.

Current- charges moving around

Both conductors *and* non-conductors can be charged!

- Even though non-conductors do not have free electrons wandering about, they can be charged by friction
- When you move your comb through your hair, the friction (rubbing) between the comb and hair can pull some of the electrons out of your hair and onto the comb
- as a result your comb ends up with a net negative charge and attracts your hair which is now positive.

Charging by friction - triboelectricity

- If you rub plastic with fur (e.g. cat or rabbit), electrons are rubbed onto the plastic making it negative
- if you rub glass with silk, electrons are rubbed off the glass making it positive

14

• the charge can be transferred to other objects.

The charging process

- an object is charged positive (has a net positive charge) if electrons are removed from it
- an object is charged negative (has a net negative charge) if electrons are transferred to it
- charges can be transferred from conductors or non-conductors but they can only move through conductors.
- Charge is conserved in the transfer of charge
 the charge is merely passed from one object to another, no charge is lost in this process.

15

One Coulomb is a HUGE charge

- To get a charge of one Coulomb on an object we would have to remove roughly 6 x 10¹⁸ electrons from it!
- In the capacitor discharge demonstration, only 1/100 of a Coulomb was involved.

20

