L 25 Electricity and Magnetism [3]

- Electric circuits
 - what conducts electricity
 - what does and doesn't conduct electricity
- Current, voltage and resistance
 - Ohm's Law
 - Power loss due to heat produced in a resistor
- Simple circuit connections

Electric current (symbol I)

• Electric current is the flow of electric charge q

• It is the amount of charge q that passes a given point in a wire in a time t:

2

$$I = \frac{q}{t}$$

• Current is measured in amperes

• 1 ampere (A) = 1 C / 1 s

Examples A charge of 1 microcoulomb (10⁻⁶ C) passes through a wire every millisecond (10⁻³ s). What is the current in the wire? →I = q/t = 10⁻⁶ C/10⁻³ s = 10⁻⁶⁺³ s = 10⁻³ A = 1 milliamp = 1 mA

• A current of 3 A flows in a wire. Over a period of 1 minute, how much charge passes a given point in the wire?

→ q = I × t = 3 A × 60 s = 180 C

Potential difference or Voltage (symbol V)

- To make water flow in a pipe, a pressure difference must be applied between the ends of the pipe
- A potential difference or voltage must be applied between the ends of a conductor to make the electrons flow
- Voltage is supplied by a battery (DC) or a an electrical outlet (AC)

Electrical resistance (symbol R)

- Conductors have "free electrons" that roam around randomly → no current
- To push these free electrons through a conductor, i.e., to make a current, some external force must be applied to the conductor
- This external force must be continually applied because the electrons experience a **resistance** to motion, because they keep bumping into the atoms and slowing down
- The slowing down of the electrons is called "resistance" (R) and is measured in Ohms (Ω)
- The battery provides the external force
 (voltage) that keeps the electrons moving

• We use the symbol _______ to represent the electrical resistance in a circuit

From Ohm's law

11

Heat produced in a resistor

- Power \rightarrow P = I × V or I² × R
- Power is measured in Watts = amps × volts
- One Watt is one Joule per second
- Wires are rated for the maximum current that can be handled based on how hot it can get
- To carry more current you need wire of a larger diameter → this is called the wire gauge, the lower the gauge the more current it can carry
- Using extension cords can be dangerous!

12

examples

- How much current is drawn by a 60 Watt light bulb connected to a 120 V power line?
- Solution: $P = 60 W = I \times V = I \times 120$
 - so I = 0.5 Amps (A)
- What is the resistance of the bulb?
- Solution: $V = I R \rightarrow 120 V = \frac{1}{2} A \times R$

so
$$R = 240 \Omega$$
, or $R = V/I$

How much current is used by a 2000 W hair dryer plugged into a 120 V power source? \Rightarrow P = I V \Rightarrow I = P / V = 2000W / 120 V \approx 17 A

extension cords and power strips

- extension cords are rated for maximum current → you must check that whatever is plugged into it will not draw more current than the cord can handle safely.
- power strips are also rated for maximum current → since they have multiple inputs you must check that the total current drawn by everything on it does not exceed the posted current rating

14

Parallel and Series Connections Parallel connection All bulbs have the same voltage = 12 V. The current provided 12 V by the battery is divided equally Series connection among the 3 light The same current bulbs. passes through each 12 V light bulb. Each bulb has a voltage of 4 V across it.

Simple direct current (DC) electric circuits

Electric circuits - key points

- · Electrons carry the current in a conductor
- a circuit provides a closed path for the electrons to circulate around
- Conductors have a property called resistance which impedes the flow of current
- the battery is like a pump that re-energizes the electrons each time they pass through it
- Ohm's law is the relation between current, voltage and resistance: V = I R
- When current passes through a wire, the wire heats up, the amount of heat energy produced each second (Power) is P = I V = I² R

18

What is DC (direct current) ?

- With DC or direct current the current always flows in the same direction
- this is the type of current you get when you use a battery as the voltage source.
- the direction of the current depends on how you connect the battery
- the electricity that you get from the power company is not DC it is AC (alternating).

19

• We will discuss AC in the next lecture

Disposable vs. Rechargeable Batteries

- Disposable batteries are electrochemical cells that convert chemical energy into electrical energy. Because the electrode materials are irreversible changed during discharge, they must be replaced
- Rechargeable batteries are also electrochemical cells, but use materials in which the chemical reactions can be reversed in the recharging process

25