29:129 Fall 2012 Chapter 1: Summary of important concepts

- Field: a quantity that is specified at each point in space (x,y,z)
 - scalar field f(x,y,z): a scalar specified at each (x,y,z)
 - vector field $\vec{A}(x, y, z)$: a vector specified at each (x,y,z)
- (Helmholtz theorem) A vector $\vec{A}(x, y, z)$ is completely specified (known) by giving its divergence, $\nabla \cdot \vec{A}$, and curl, $\nabla \times \vec{A}$.
- (Divergence theorem) The flux of a vector through a closed surface S is related to the integral of its divergence over the volume enclosed by S.
- (Stokes' theorem) The circulation of a vector around a closed loop C is related to the integral of its curl over any surface bounded by C.
- If $\nabla \times \vec{F} = 0$, then the vector \vec{F} can be expressed as the gradient of a scalar function, $\vec{F} = \nabla f$. A vector having zero curl is called an "irrotational" vector.
- If $\nabla \cdot \vec{F} = 0$, then the vector \vec{F} can be written as the curl of another vector \vec{A} , called the vector potential, $\vec{F} = \nabla \times \vec{A}$. A vector having zero divergence is called a "solenoidal" vector.