
29:129 Details on the derivation of the magnetic dipole moment (12/7/12) 
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The first integral is zero since it is the integral of a 

perfect differential around a closed path-- the limits

of integration begin and end with the same v

d r r r r r dr r r dr               
       

alue.

 

 

     
 

   

ˆ ˆ ˆthen, ,

ˆthe first integral on the RHS is ,

1 1
ˆ ˆ ˆso combining things we have that: 
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Notice that the last integral has dimensions of L2 (area), so define 
1

2
a r dr  
   .  This is a 

general expression for the area of an arbitrarily shaped surface, defined as a vector. For a planar 
surface, a is just the area.  To show this first consider finding the area of a parallelogram. 
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Now apply this to an arbitrarily shaped planar surface: The area can be obtained by forming the 
differential triangle (shaded region):    (1 2) sin (1 2)da rdr r dr     

 
.  The total vector 

area is then 
1

2
a r dr  
   .  As an example, consider a circle of radius R: 
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