29:129 Details on the derivation of the magnetic dipole moment (12/7/12)
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The first integral is zero since it is the integral of a

perfect differential around a closed path-- the limits
of integration begin and end with the same value.

then, Sﬁ(f.F’)dF’:c_{) (F-dr’) <j>r><
the first integral on the RHS is —cﬁ(r-r )dr ,

so combining things we have that: <ﬁ(f F)dr' = —%95 Fx(F' xdr) = B@F’xd?’}xf

Notice that the last integral has dimensions of L? (area), so define & = %cﬁ r'xdr’. Thisisa

general expression for the area of an arbitrarily shaped surface, defined as a vector. For a planar
surface, a is just the area. To show this first consider finding the area of a parallelogram.
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Now apply this to an arbitrarily shaped planar surface: The area can be obtained by forming the
differential triangle (shaded region): da = (1/2)'rdr’sin(8) = (1/2)|F'xdF|. The total vector
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area isthen a = Ecﬁ r'xdr’. Asanexample, consider a circle of radius R:
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