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Griffiths Section 3.3.1—Two seni-infinite, conducting, grounded plates parallel to the x-
z plane. An infinitely long conducting strip in the y —z plane is present on the left side of
the plates and is biased to a potential V,. We calculate the potential in the region between
the upper and lower plates. The problem is two-dimensional, V = V(x,y)
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:Griffiths Section 3.3.1 (Vo=La=1) n is replaced by 2 n + 1 then the sum goes from O to infinity
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Plot the potential V(x,y) for x = 0, where the boundary condition V=Vo = 1, for various numbers of
terms in the expansion.
We notice that even with 100 terms, there are oscillations near y =0 and y = 1, (corners) This is a
phenomenon known to
occur with Fourier series and is known as "Gibbs Phenomenon™. When more terms are included the
effect moves closer

| to the boundaries.
>

=> plot([sum(V(0,y),n=0..0),sum(V(0,y),n=0.5),sum(V(0,y),n=0..10), sum(V(0,y), n
=0..100)], y=0..1, color = [red, blue, green, black]);
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:For specific values of y, plot V(x) --- the potential falls off exponentially with x
> plot([sum(V (%, 0.2),n=0..100), sum(V(x,0.5),n=0..100), sum(V(x, 0.9),n=0..100) ], x
=0..2, color = [red, black, green]);
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;Plot V(y) for fixed x values (use 100 terms in the sum) The potential goes to zero at the boundaries

> plot([sum(V(0.5,y),n=0..100), sum(V(1,y),n=0..100), sum(V(1.5,y),n=0..100), ], y
=0..1, color = [red, blue, green]);
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Show a "3D" plot of the potential (use 100 terms in the sum)
> SUMV :==sum(V(x,y),n=0..100) :
> plot3d(SUMV, x=0..2,y=0..1, color =x);




