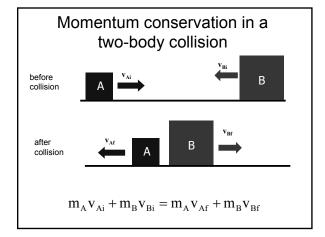
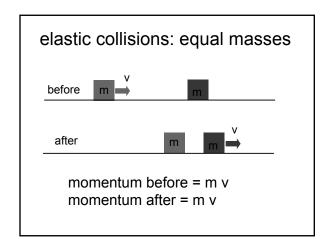
L-8 (I) Physics of Collisions (II) Work and Energy

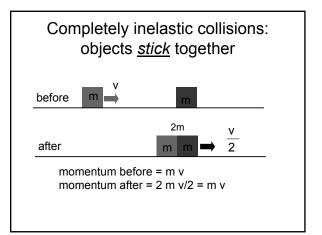
- I. Collisions can be very complicated

 two objects bang into each other and exert strong forces over short time intervals (impulsive forces)
 - even though we usually do not know the details of the forces, we know from the 3rd law that the forces acting on the colliding objects are equal and opposite
 Momentum is conserved in collisions
- II. Physics definition of WORK. When am I doing work?

I. Physics of collisions conservation of momentum

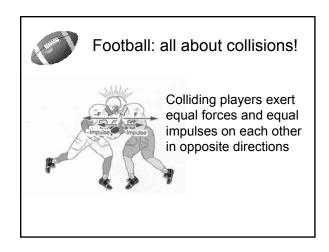

- The concept of momentum is very useful when discussing how 2 objects interact.
- Suppose two objects are on a collision course. A→ ←B
- We know their masses and speeds before they collide
- The momentum concept helps us to see what will happen after they collide.

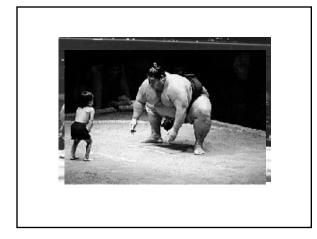

Conservation of Momentum

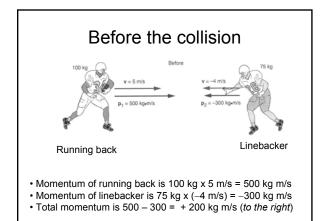

- One consequence of Newton's 3rd law is that if we add the momentum of both objects before the collision it MUST be the same as the momentum of the two objects after the collision.
- This is what we mean by conservation: when something happens (like a collision) something doesn't change – that is very useful to know because collisions can be very complicated!

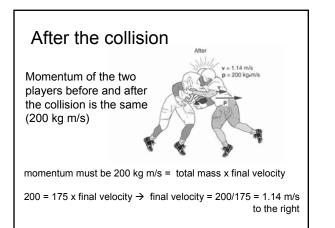
Momentum: p = m v

- a 1 kg object moving at 1000 m/s has the same momentum as a 1000 kg object moving at 1 m/s (p = 1000 kg m/s)
- Impulse = ∆p (delta p means the "change" in momentum, p)
- Impulse = F Δt = Δp, so if 2 objects collide, the forces are the same (Newton's 3rd law), and Δt is the same, so Δp is the same for both.
- the momentum lost by one object is gained by the other object → conservation

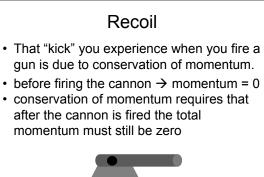




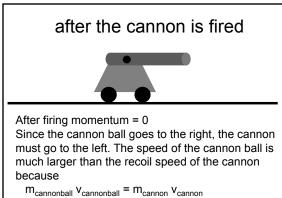


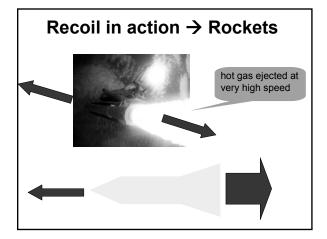

How much momentum did the stationary object get in the collision?

- In the elastic collision the object that was initially at rest got a momentum = m v
- in the inelastic collision the object that was at rest got only m v /2 → half as much!
- This is another example of the fact that more force is involved between bouncy objects (elastic) compared to non-bouncy objects (inelastic)

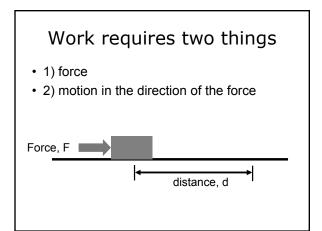


friendly "collisions"



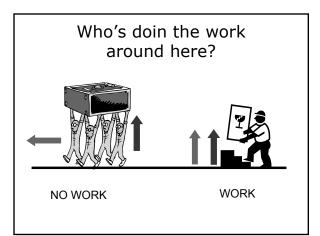

- · Two stationary ice skaters push off
- · both skaters exert equal forces on each other
- however, the smaller skater acquires a larger speed than the larger skater.
- · momentum is conserved!

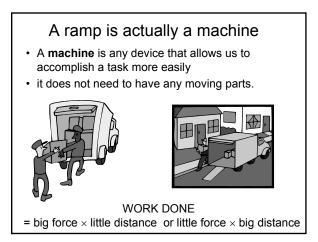
or small mass x big speed = big mass x small speed


II. Work and Energy

- These terms have a common meaning in everyday language which are not the same as the physics definitions
- · If we have "energy" we can do things
- Energy is the ability to do work
- · But what is energy?

What is work?




- According to the physics definition, you are NOT doing work if you are just holding the weight above your head
- you are doing work only while you are <u>lifting</u> the weight above your head

Physics definition of WORK

- to do work on an object you have to push the object a certain distance in the direction that you are pushing
- Work = force x distance = F x d
- If I carry a box across the room I do not do work on it because the force is not in the direction of the motion

