Formulas

- Kinetic Energy \(KE = \frac{1}{2} mv^2 \)
- gravitational potential energy \(GPE = mgh \)
- frequency \(f = \frac{1}{T} \), where \(T \) is the period of oscillation
- Period of a mass-spring oscillator: \(T = 2\pi \sqrt{\frac{m}{k}} \)
- period of a pendulum: \(T = 2\pi \sqrt{\frac{L}{g}} \)

Exercises

1. A 10 kg mass is attached to a rope that is 100 m long to form a huge pendulum. The mass is pulled aside so that it is 5 meters above its resting point.

 (a) How much potential energy (PE) does it have when it is 5 m above its resting point?

 (b) When the pendulum is released how much kinetic energy (KE) will it have when it passes through its lowest point? \textit{Hint:} energy is conserved.

 (c) How fast will it be moving when it passes through its lowest point?

 (d) If it takes 2 seconds for the pendulum to reach its lowest point after it is released, when will it return to its initial position? What is this time called?

2. The period, \(T \) of a harmonic oscillator is 4 seconds. What is its frequency \(f \)?

3. The frequency, \(f \) of a harmonic oscillator is 0.1 Hz. What is its period of oscillation?

4. What force is needed to keep a spring stretched by 10 cm if the spring constant is 20 N/m?
5. When cart of mass \(m \) is connected to a hoop spring of spring constant \(k \) on the air track, the cart undergoes simple harmonic motion with a period of 5 seconds. The experiment is repeated with a different cart of mass \(M \) and it is found that the period is 10 seconds. What is the relationship between \(m \) and \(M \)?

6. A huge pendulum is made by hanging a 100 kg mass at the end of a rope that is 40 m long.
 (a) What is the period of this pendulum?
 (b) How many complete cycles will this pendulum execute in one minute?

Solutions

1. (a) \(PE = m \cdot g \cdot h = 10 \text{ kg} \cdot 10 \text{ m/s}^2 \cdot 5 \text{ m} = 500 \text{ J} \)

 (b) all of the PE is converted to KE at the bottom, so \(KE = PE = 500 \text{ J} \)

 (c) \(KE = \frac{1}{2} \cdot m \cdot v^2 \rightarrow v = \sqrt{\frac{2 \cdot KE}{m}} = \sqrt{\frac{2 \cdot 500 \text{ J}}{10 \text{ kg}}} = \sqrt{\frac{1000}{10}} = \sqrt{100} = 10 \text{ m/s} \)

 (d) It takes 2 seconds to get to the bottom, another 2 seconds to rise to its highest point on the left side, 2 seconds to get back down to the bottom and another 2 seconds to get back to its starting point, so the total is \(2 + 2 + 2 + 2 = 8 \text{ seconds} \). This time is called the period, \(T \) of oscillation.

2. \(f = \frac{1}{T} = \frac{1}{4 \text{ s}} = \frac{1}{4} \text{ Hz} = 0.25 \text{ Hz} \)

3. \(T = \frac{1}{f} = \frac{1}{0.1 \text{ Hz}} = \frac{1}{10 \text{ Hz}} = 10 \text{ s} \)

4. Magnitude of force, \(F = k(N/m) \cdot x \) (amount of stretch in m) = \(20 \text{ N/m} \cdot 0.10 \text{ m} = 2 \text{ N} \).

5. \(T = 2\pi \sqrt{\frac{m}{k}} \rightarrow \) to double \(T \), the mass must increase by a factor of 4, since \(\sqrt{4} = 2 \).

 Therefore \(M = 4 \cdot m \).

6. (a) \(T = 2\pi \sqrt{\frac{L}{g}} = 2\pi \sqrt{\frac{40 \text{ m}}{10 \text{ m/s}^2}} = 2\pi \sqrt{4} = 4\pi = 12.6 \text{ s} \)

 (b) \(f = 1/T = 0.079 \text{ Hz} \) or 0.079 cycles per second, thus in one minute (60 s) this pendulum will execute 0.079 cycles/s \(\times 60 \text{ s} = 4.76 \) cycles, or 4 complete cycles