L 19 - Thermodynamics [4]

- Heat capacity
- Change of phase (ice \rightarrow water \rightarrow steam)
- heat, work, and internal energy
- the 1st Law of Thermodynamics
- THE 2ND Law of Thermodynamics

How do I boil water?

- How much heat does it take to boil water, i.e., how much heat must be transferred to a specific mass of water to raise its temperature to the boiling point?
- Related question: How much heat is required to raise the temperature of water by a specified number of degrees?
- The answer depends on how much water you have and how hot you want to get it → m and ΔT, where m is the mass and ΔT is the temperature *change*
- The answer would be different for a different material, say aluminum→ there must be a parameter for each substance – heat capacity, c.

Examples- heat capacity

 (1) How much heat must be added to 1 kg of water to increase its temp from 20C to 60C?
 Q = mc∆T = 1000g × 1cal/gC × 40C = 40,000C

 (2) How much heat must be *removed* from 2 kg of water to cool it from 90C to 10C?
 Q = mc∆T = 2000g × 1cal/g × C × 80C =160,000C

Temperature change is

always positive

Some neat capacities			
Substance	Specific heat in cal/g °C		
water	1		
Ethyl alcohol	0.58		
Steel	0.11		
Aluminum	0.215		
lead	0.03		

Boiling water

Making ice in a vacuum Freeze drying

energy from natural gas

- 1 BTU = the heat needed to raise the temperature of 1 pound of water by 1 °F
- 1 cubic foot of natural gas gives off about 1000 BTU when burned
- so to boil (go from 72 °F to 212 °F) one gallon of water (about 8 lbs) requires about 1 BTU/1°F x 140 °F = 140 BTU/lb

x 8 lbs \rightarrow 1120 BTU's or more than 1 ft³

 1 cubic foot of natural gas costs about 1.5¢; it would cost about 3¢ using electricity

Heat, work, and internal energy

- The gas has internal energy, as indicated by its temperature
- if heat is added its internal energy increases
- if the gas expands and does work on the atmosphere, its internal energy decreases
- the 1st law of thermodynamics keeps track of the balance between the *heat, work and internal energy* of the gas

The first law of thermodynamics

- the change in internal energy of the gas
 - the heat absorbed by the gas minus the work done by the gas
- this is a simple energy accounting principle

Analogy to your bank account

- the change in your bank account balance
 - = deposits (\$ in) withdrawals (\$ out)
- the same conservation principle applies to energy transfers
 - → 1st Law of Thermodynamics

work done by or on a gas

gas

heat

- if a gas does work (expansion) its internal energy goes down and so does its temp.
- if work is done on a gas (compression) its internal energy goes up and so does its temperature
- the internal energy of a gas can be changed by adding or taking away heat or by having the gas do work or doing work on the gas

Change in internal energy	HEAT	WORK
increase	in	0
increase	0	on gas
decrease	out	0
decrease	0	by gas
increase	in	on gas
decrease	out	by gas

all quantities measured in Joules or Calories

EXAMPLE What is the change in the internal energy of a gas if 3000 J of heat are added while the gas does 1000 J of work? change in internal energy heat in - work done 3000 J - 1000 J = 2000 J

 The outcome is first of all limited by the 1st law (you can't get more out than goes in)

Second law of thermodynamics

- It is impossible to have a heat engine that is 100 % efficient
- Not all of the heat taken in by the engine can be converted to work
- HEAT is random energy and work is ordered energy