L-6 - Newton's Second Law

- Objects have a property called inertia which causes them to resist changes in their motion (Newton's1 ${ }^{\text {st }}$ Law or Galileo's law of inertia)
\rightarrow if it is at rest, it stays at rest
\rightarrow if it is moving, it keeps moving with constant velocity
- forces can overcome inertia to produce
acceleration (2 ${ }^{\text {nd }}$ Law)
Change in velocity

Force is a vector quantity

- It matters not only how hard you push, but also in what direction

The NET Force

- What really matters is the Net Force
- The Net Force is what you get when all the forces are properly combined
- The Net Force takes into account both how strong the forces are and in what direction they act

- The Net Force determines the acceleration of the object

Example: Net force $=0$

A skydiver has two forces - gravity (his weight) and air resistance. When they balance, he coasts down with constant speed.

- Zero net force does not necessarily imply zero velocity (a skydiver's terminal speed will be greater than 100 mph)
- Zero force \rightarrow constant velocity, $\mathrm{v}=0$ is a special case of constant velocity. A parachutes reduce the terminal speed to about 10 mph .

Newton's $2^{\text {nd }}$ Law

- To change the velocity of an object a net force must be applied to it.
- A push

- Or a pull

The moon is falling away from its straight line path

- The force of gravity acting on the moon pulls it away from its otherwise straight line
- the moon is constantly falling toward the earth in the sense that it falls away from the straight line it would follow if the earth were not there

Contact and non-contact forces

- Pushes, pulls, friction, and tension are contact forces- whatever exerts the force actually touches the object
- Non-contact forces: \rightarrow Forces that act without contact between objects
a) electric forces
b) magnetic forces
c) gravity

Acceleration

- Any change in velocity is acceleration
- If you speed up (velocity increases), there is acceleration
- If you slow down (velocity decreases) there is acceleration - we call this deceleration - putting on the brakes!
- If you turn (change direction) there is acceleration

You are accelerating if

- You are going down a steep hill on rollerblades (your velocity increases)
- In an elevator when it starts to go up (you are at rest then start moving)
- In a car going around a curve at constant speed (the direction of your velocity changes)
- You are on a bus that is slowing down (your velocity decreases)
- you are in an elevator and the cable breaks (you will accelerate downward (good luck)

other forms of Newton's $2^{\text {nd }}$ Law

- If a force F is applied to an object of mass M then the acceleration is

$$
a=\frac{F}{m}
$$

- If a force F acts on an object and the acceleration is a , then the mass must be

$$
m=\frac{F}{a}
$$

Hanging mass accelerometer

Newton's $2^{\text {nd }}$ Law: $\mathrm{F}=\mathrm{m}$ a

- It is the law which explains how things move - dynamics
- If a net force is applied to an object it will accelerate - change its velocity
- It includes the law of inertia \rightarrow if there is no force, $F=0$, then the acceleration $=0$
\rightarrow the velocity doesn't change
\rightarrow no force is needed to keep an object moving with constant velocity.

The "F" in F = m a

- If there is more than one force acting on an object, then F is the net force.
- If two people pull on an object with equal forces in opposite directions, then the net force is zero and the acceleration is zero.

Acceleration due to gravity

- $w=m \times g$
- $F=m \times g=m \times a \rightarrow a=g$ for any m

Example Problem -1

- Two forces act on a 4 kg object. A 14 N force acts to the right and a 2 N force acts to the left. What is the acceleration of the object?
- Net force $=14 \mathrm{~N}-2 \mathrm{~N}=12 \mathrm{~N}$ (to the right)
- $\mathrm{F}=\mathrm{ma} \rightarrow 12 \mathrm{~N}=4 \mathrm{~kg} \times \mathrm{a}$
- $\rightarrow \mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2} \rightarrow$ the object accelerates to the right at $3 \mathrm{~m} / \mathrm{s}^{2}$, in the direction of the NET force

Example Problem 2

Push $=10 \mathrm{~N} \longrightarrow 2 \mathrm{~kg} \longleftarrow$ Friction force $=2 \mathrm{~N}$

- A 2 kg box is pushed by a 10 N force while a 2 N friction force acts on the box. What is the acceleration of the box?
- Net force $=10 \mathrm{~N}-2 \mathrm{~N}=8 \mathrm{~N}$ to the right
- acceleration $=$ Force $/$ mass $=8 \mathrm{~N} / 2 \mathrm{~kg}=4 \mathrm{~m} / \mathrm{s}^{2}$ to the right.
\rightarrow acceleration is in the direction of the NET Force

