4th International Conference on the Physics of Dusty Plasmas Orléans, June 17, 2005

Experimental Investigations of Dusty Plasmas

Robert L. Merlino Department of Physics and Astronomy University of Iowa

Purpose

 Highlight some of the experimental work on dusty plasmas (1980present)

 theorists had about a 10 year head start on the experiments

• Provide some "historical perspective"

I. Early History

- The first observations of a dusty plasma in the laboratory were made by Langmuir.
- He reported these observations on September 18, 1924 at an address at the Centenary of the Franklin Institute in Philadelphia.
- "... we have observed some phenomena of remarkable beauty which may prove to be of theoretical interest."
- Langmuir, Found and Dittmer, Science, vol. 60, No. 1557, p 392 (1924)

Langmuir's Observations

- small tungsten 'globules' were sputtered into the discharge from the filament
- these globules could be made to move upward and their motions could easily be followed visually
- by concentrating a beam of sunlight into the tube, he could see a 'very intense scattering' from the particles

Langmuir's conclusions

- Langmuir concluded that since the walls of the tube are negatively charged, the particles must also be negatively charged because they do not deposit on the walls
- the negatively charged particles is surrounded by a positive ion shielding cloud
- the negative particles can lose their charge when moving through an ion sheath, and the resulting neutral particles can condense into larger solid particles

Langmuir's other contributions

- The concept of the *floating potential* "Any electrode to which no current flows is negatively charged with respect to the surrounding plasma."
- a probe placed in a plasma does not measure the space potential
- He derived the form of the OML current to a probe
- However, Spitzer (1941) was the first to write down the equation $1 \varphi_f (m_i/m_e)^{1/2} e^{\varphi_f} = 0$

II. Dusty Plasma Research

III. Experimental work on dusty plasmas

1. discovery of the spokes in Saturn's B ring by the Voyager 2 imaging team in 1981.—

2. Dust contamination in plasma processing tools.—

L. Boufendi and A. Bouchoule, Plasma Sources Sci. & Technol. 3, 262, 1994.

3. Devices specifically introduced to make a dusty plasma.—

University of California at Irvine-*Sheehan, Carillo and Heidbrink RSI 61, 3871 (1990)*

b) Device used for basic charge measurement

Walch, Horanyi, & Robertson, Phys. Rev. Lett. 75, 838 (1995)

c) The lowa rotating dust dispersal device (Xu, Song, Merlino, D'Angelo, RSI 63, 5266, 1992)

This device produced a relatively large volume of dusty plasma, suitable for wave experiments

d) The GEC radio frequency reference cell

- introduced in 1988 for experimental studies of plasma-processing discharges
- adopted by many labs as the standard platform for dusty plasma studies
- provided an almost ideal environment (not intended) for the study of strongly coupled dusty plasmas

RF parallel plate devices and the discovery of Coulomb Crystals

- Operate at relatively high gas pressures (40 Pa, 200 mTorr, 2 mbar) which helps calm down the dust particles
- Have strongly inhomogeneous vertical and horizontal electric fields that provide a "trap" for negatively charged dust particles

- Hayashi & Tachibana, Jpn. *J. Appl. Phys.* 33, 804, 1994.
- Chu & I, Phys. Rev. Lett. 72, 4009, 1994.
- Thomas, Morfill, Demmel, Goree, Feuerbacher & Mohlmann, Phys. Rev. Lett. 73, 652, 1994.

IV. Waves in dusty plasmas

- experiments on dusty plasmas lagged seriously behind theory
- e.g., the theoretical discovery of the dust acoustic wave (*Rao, Shukla, and Yu, Planet. Space Sci. 38, 543, 1990*) preceded experimental observations by 5 years (*Barkan, Merlino, and D'Angelo, Physics of Plasmas 2, 3563, 1995.*)

Unexpected findings: the role of serendipity

- Dust acoustic waves and Coulomb crystals
- Chu, Du and I (*J. Phys. D 27, 296, 1994*) reported that in order to see Coulomb solids, low frequency fluctuations (12 Hz with wavelengths of 0.5 cm, v_{ϕ} = 6 cm/s) had to be suppressed.
- D'Angelo (*J. Phys. D 28, 1009, 1995*) interpreted these fluctuations as DAWs.

Dust Acoustic Waves

- Adrian Barkan and I were studying the confinement and structure of "dust balls" in an anode double layer
- In an attempt to improve the viewing geometry, the anode was pulled back into the weaker magnetic field region
- the spherical dust structure expanded into a dust cloud (fluid) and 15 Hz fluctuations appeared, which we later identified as dust acoustic waves (*Barkan, Merlino and D'Angelo, PoP 2, 3563, 1995*).

Observation of the Dust Balls

Observation of Dust Acoustic Waves

AMI AMII:40 MAY.17 1995

State.

And Address

and the second second

and a

(Beenty)

-

1000

APRIL 1 Contraction of the

2000

STEPS .

1000

and the second

Status.

and the second se

of the other designs, so the

100000-000

the state

-

Statements - Statement - Spinster

All shares in succession of

And and the second

- No. of Contract

and the second second

12.18

100

100

10

And the second second

Contract of the local division of the local

1000

dian

1000

States -

1000

100

故

100

20

ALC: NO.

.

20

に設め

No.

10

diane -

Million of Con

R

100

-tenanti-

-

in the second

100

ST. CALL

and the second second

20.00

S. Berlin

Support the

Contraction of the

of the local division in which the

Contract Contraction

- Alexandra - Alexandra

And a state of the

And Street

1204

Sec. 1

ALC: NOT THE OWNER.

V. Dusty Plasmas under Microgravity

- Often dusty plasmas on earth tend to be dominated by gravity
- Gravity causes dust crystals to consist of a few layers of two dimensional structures
- Led to the development of the PKE- Nefedov device onboard the ISS

More Surprises and New Physics!

- Elimination of gravity reveals the ion drag force
- Ions shuffled out the center of the positive discharge region, carry dust particles along, creating a void.

A look back → 1990 - 2000

- 4th Workshop on dusty plasmas (1990, lowa City)
 - 2¹/₂ days, 23 presentations
 - dominated by discussions on planetary rings and comets
 - 3 preliminary laboratory experiments
 - only one talk on plasma processing
 - no dust crystals or strongly coupled plasmas
- 8th Workshop on dusty plasmas (2000, Sante Fe)
 - 3 days, 76 presentations
 - 16 oral and 18 poster experimental presentations
 - 4 from plasma processing community
 - topics included plasma crystals, Mach cones, waves in strongly coupled plasmas, microgravity

A look forward → ICPDD4

- effects of strong magnetic fields
- dust in fusion devices
- dust phenomena in the earth's atmosphere
- nonlinear dusty plasma physics
- nanoparticle growth
- to a greater and greater extent, the experiments are motivating theory