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Abstract. The basic features of dusty plasmas, particularly basic characteristics of
dust in a plasma, and typical dusty plasma parameters for different space and
laboratory plasma conditions, are presented. The complexity and the diversity of
the field of dusty plasma physics are briefly discussed. Theoretical and experimental
discoveries of linear and nonlinear features of waves, particularly dust-ion-acoustic
and dust-acoustic waves, in dusty plasmas are reviewed.

1. Introduction
A plasma with dust is roughly known as a dusty plasma [1–9]. Dust particles in a
plasma are not neutral, but are charged either negatively or positively depending on
the ambient plasma environments. The mass (million to billion times heavier than
ions), size (nm to mm) and charge (few hundred to hundred thousand electron or
proton charges) of dust are not, in general, constant, but vary with space and time.
The addition of such dust (of variable mass, size and charge), therefore, makes a
plasma system very complex. A plasma with dust is, therefore, known as a complex
plasma. At equilibrium (in absence of any external disturbance) like an electron–
ion plasma, a dusty plasma is also macroscopically neutral. This means that in
an equilibrium (with no external force present), the net resulting electric charge in
a dusty plasma is zero. Therefore, the equilibrium charge neutrality condition in
a dusty plasma reads qini0 = ene0 − qd0nd0, where ns0 is the number density of the
plasma species s (s equals e for electrons, i for ions and d for dust) at equilibrium,
qi =Zie is the ion charge (we note that the ion charge state Zi = 1 will be used in this
paper), qd0 =Zde (−Zde) is the equilibrium dust charge when the grains are positively
(negatively) charged, e is the magnitude of the electron charge and Zd is the number
of charges residing onto the dust grain surface. Typically, a dust grain acquires
one thousand to several hundred thousands of elementary charges and Zdnd0 could
be comparable to ni0, even for nd0 � ni0. However, in many laboratory and space
plasma situations, the most of the background electrons could stick onto the dust
grain surface during the charging processes, and as a result one might encounter a
significant depletion of the electron number density in the ambient dusty plasma.
Accordingly, for negatively charged dust grains the equilibrium charge neutrality
condition is then replaced by ni0 ≈ Zdnd0. It should be noted here that a complete
depletion of the electrons is not possible, because the minimum value of the ratio
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of electron number density to ion number density turns out to be the square root
of the ratio of electron mass to ion mass when electron and ion temperatures are
approximately equal, and the grain surface potential approaches to zero.

The presence of charged dust particles significantly modifies the plasma Debye-
radius. The dusty plasma Debye-radius λD is defined as [5] 1/λ2

D = 1/λDe2 + 1/λ2
Di,

where λDe,i = (kBTe,i/4πne0,i0e
2)1/2 (with Te (Ti) being the electron (ion) temperature,

and kB being the Boltzmann constant). The quantity λD is a measure of the shielding
distance or the thickness of the sheath. For a dusty plasma with negatively charged
dust grains, we have ne0 � ni0 and Te � Ti, i.e. λDe�λDi. Accordingly, we have
λD � λDi. This means that the shielding distance or the thickness of the sheath in a
dusty plasma with negatively charged dust is mainly determined by the temperature
and number density of the ions. However, when the dust particles are positively
charged, and most of the ions are attached onto the dust grain surface, i.e. when
Teni0 �Tine0, we have λDe � λDi. The latter corresponds to λD � λDe. This means that
in a dusty plasma with positively charged dust, the shielding distance or the thickness
of the sheath is mainly determined by the temperature and density of the electrons.

Similar to the usual electron–ion plasma, an important dusty plasma property
is the stability of its macroscopic space charge neutrality. When a plasma is
instantaneously disturbed from its equilibrium, the resulting internal space charge
field gives rise to collective particle motions, which tend to restore the original
charge neutrality. These collective motions are characterized by a natural frequency
of oscillations known as the plasma frequency, which is defined as ω2

p =
∑

s ω
2
ps,

where ωps = (4πns0q
2
s /ms)

1/2, with ms being the mass of the species s. The other
important characteristic frequencies are associated with the collisions of the plasma
particles (electrons, ions and dust) with stationary neutral atoms or molecules.
These are electron-neutral collision frequency, νen, ion-neutral collision frequency,
νin and dust-neutral collision frequency, νdn, respectively. The collision frequency,
νsn, for scattering of the plasma species s by stationary neutrals is νsn = nnσ

n
s VTs,

where nn is the neutral number density, σn
s is the scattering cross section (which is

typically of the order of 5 × 10−15 cm2, and depends weakly on the temperature, Ts),
and VTs = (kBTs/ms)

1/2 is the thermal speed of the species s. The collisions of the
plasma particles with stationary neutrals tend to damp their collective oscillations,
and gradually diminish their amplitudes. The oscillations will be slightly damped
only when the collision frequency νsn is smaller than the plasma frequency ωp, i.e.
νen, νin, νdn < ωp.

Dusty plasmas are rather ubiquitous in space [1–5]. There are a number of
well-known systems in space, such as inter-planetary space, interstellar medium,
interstellar or molecular clouds, circumstellar clouds, comets, solar system, planetary
rings, noctilucent clouds (NLCs), earth’s environments, etc., where charged dust
particles are always present. The interstellar space (space between the stars) is filled
up with a vast medium of gas and dust. The gas content of the interstellar medium
continually decreases with time as new generations of stars are formed during the
collapse of giant molecular clouds. The collapse and fragmentation of these clouds
give rise to the formation of stellar clusters. The presence of dust in interstellar
or circumstellar clouds has been known for a long time (from star reddening
and infrared emission). The dust grains in interstellar or circumstellar clouds are
dielectric (ice, silicates, etc.) and metallic (graphite, magnetite, amorphous carbon,
etc.). The solar system is also full of dust. The existence of dust in the early solar
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Table 1. Typical dusty plasma parameters in interstellar space.

Characteristics Interstellar clouds Zodiacal dust disc Haley’s comet

ne (cm−3) 10−4–10−3 1–10 102–104

Te(K) 10–20 104–105 103–104

nd (cm−3) 10−7–10−6 10−12–10−11 10−8–10−3

rd (µm) 0.1–0.5 1–10 0.1–10

Table 2. Typical dusty plasma parameters in Saturn’s E-ring, F-ring and spokes.

Characteristics E-ring F-ring Spokes

ne (cm−3) 10–20 10–20 0.1–102

Te (K) 105–106 105–106 104–105

nd (cm−3) 10−7–10−6 1–10 0.5–1.5

rd (µm) 0.1–0.5 1–10 0.5–1.5

Table 3. Typical dusty plasma parameters in NLCs, rocket exhausts and flames.

Characteristics NLCs Rocket exhausts Flames

ne (cm−3) 103–104 1012–1013 1011–1012

Te (K) 50–102 103–104 103–104

nd (cm−3) 10–102 107–108 1010–1011

rd (µm) 0.1–1 0.1–1 0.01–0.1

nebula has long been advocated by the Nobel laureate, Hannes Alfvén [10]. The
coagulation of the dust grains in the solar nebula would have led to ‘planetesimals’,
from where comets and planets have been formed. The physical properties (such as
size, mass, density, charge, etc.) of such dust grains vary depending on their origin
and surroundings. The origins of the dust grains in the solar system are, for example,
micro-meteoroids, space debris, man-made pollution, lunar ejecta, etc.

It is not sufficient to mention only the occurrence of dusty plasmas in space
and laboratory devices, but it is very important to provide values of the dusty
plasma parameters available up to now. Tables 1–4 provide us the values of these
dusty plasma parameters collected from the available literature [1–25]. Tables 1–
4 also show typical dusty plasma parameters for different space and laboratory
plasma conditions, and will help us to understand the basic physics of dust in
plasmas. The physics of mobile/immobile dust, which have variable size, charge
and mass, arises unsolvable complexities and makes the field of dusty plasma
physics (DPP) very rapidly growing (as indicated in Fig. 1) and infinitely large (as
indicated in Fig. 2). The DPP has, therefore, become an outstanding, challenging
and rapidly growing (as indicated in Fig. 1) research field not only because dust
particles are ubiquitous in most space [1–9] and laboratory plasmas [11–25], and
involve unsolvable complexities but also because it has introduced a new but
infinitely large research domain (as indicated in Fig. 2). One of the interesting
research areas of DPP is introduced by ‘collective processes in dusty plasmas’, which
introduce a great variety of new phenomena associated with waves and instabilities
[26–78]. These play a vital role in understanding different interesting phenomena in
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Table 4. Typical dusty plasma parameters in laboratory devices.

Characteristics Q-machine DC discharges RF discharges

ne (cm−3) 106–107 109–1010 109–1010

Te (K) 103–104 104–105 104–105

nd (cm−3) 103–104 103–104 105–106

rd (µm) 10–20 (Al2O3) 1–5 (Al); 60–65 (glass) 5–10 (SiO2)

Zd 103–104 105–106 103–104

Figure 1. (Colour online) Schematic of the research field of DPP is growing exponentially
since 1985 (courtesy: Prof. R. L. Merlino). This is based on ‘inspec database; subject heading:
dusty plasma(s)’. The solid curve represents N =N0 exp(T/3.9).

astrophysical and space environments, such as in inter-planetary space, interstellar
medium, interstellar or molecular clouds, comets, planetary rings, noctiluscent clouds
(NLCs), earth’s environments, etc. [1–9].

These collective dust-plasma interactions do not only modify the existing plasma
wave spectra [26, 27] but also introduce a number of new eigenmodes, such as
dust ion-acoustic (DIA) waves [30], dust-acoustic (DA) waves [28], dust-lattice
(DL) waves [41,44], dust-lower-hybrid (DLH) waves [40], dust ion–cyclotron (DIC)
waves [11], dust–cyclotron (DC) waves [37], Shukla–Varma (SV) mode [33], dust
shear-Alfvén (DSA) waves [36], dust-magnetoacoustic (DM) waves [35], etc. All of
these waves or modes have not yet been experimentally observed. But a number
of new novel eigenmodes, particularly DIA, DA and DL waves, have already been
experimentally verified by different laboratory experiments [13–16]. The linear and
nonlinear features of these waves have been rigorously investigated by a large
number of authors during last two decades [26–78]. We, in this short review paper,
have attempted to provide a brief review of theoretical and experimental discoveries
of these linear and nonlinear features of some novel new eigenmodes in dusty
plasmas, particularly DIA and DA waves (DAWs).

The manuscript is organized as follows. The theoretically predicted and experi-
mentally observed linear and nonlinear features of DIA waves are reviewed in §2,
and those of DAWs are reviewed in §3. A brief discussion is presented in §4.
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Figure 2. (Colour online) The main research areas of DPP indicating that the field of DPP is
new, but infinitely large. Here GRAV. = gravitational, THER. = thermal, RAD. = radiation,
THERMOP. = thermophoretic, SHAD. = shdowing and the other notations have already
been defined.

2. DIA waves
Shukla and Silin [30] have first theoretically shown that due to the conservation
of equilibrium charge density (ne0 +Zdnd0 = ni0), and the strong inequality, ne0 � ni0,
a dusty plasma (with negatively charged static dust) supports low-frequency DIA
waves (DIAWs) with phase speed much smaller (larger) than electron (ion) thermal
speed. The dispersion relation (a relation between the wave frequency ω and the
wave number k) of the linear DIAWs [30] is

ω

k
=

(
1

1 − µ

) 1
2 Ci√

1 + k2λ2
De

, (2.1)

where Ci = (kBTe/mi)
1/2 is the ion-acoustic speed and µ=Zdnd0/ni0. When we

consider a long wavelength limit (viz. kλDe � 1), the dispersion relation for the
DIAWs becomes ω= kCi/

√
1 − µ. This form of spectrum is similar to the usual

ion-acoustic waves (IAWs) for a plasma with ni0 = ne0 (corresponding to µ= 0) and
Ti �Te. However, in a dusty plasma we usually have ni0�ne0 and Ti � Te. Therefore,
a dusty plasma cannot support the usual IAWs, but can do the DIAWs of Shukla and
Silin [30]. The phase speed ω/k of the DIAWs is larger than Ci because of ni0�ne0
for negatively charged dust grains. The increase in the phase velocity is attributed to
the electron density depletion in the background plasma so that the electron Debye
radius becomes larger. As a result, there appears a stronger space charge electric field,
which is responsible for the enhanced phase velocity of the DIAWs. The DIAWs have
been observed in laboratory experiments [14,16]. The experimental conditions for the
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Figure 3. The normalized phase speed versus µ curves for grid-launched DIAWs (Merlino
et al. [16]). Measured normalized phase speed (along vertical or y-axis) as a function of µ
(along horizontal or x -axis): solid dots (laboratory measurement), solid curve (theoretical
measurement without plasma drift) and dotted curve (theoretical measurement with a plasma
drift of twice the acoustic speed). The phase speed is normalized by its value without dust
(µ= 0).

observation of DIAWs [14, 16] are ne � ni � 105–109 cm−3, Te � Te � 0.2–0.3 eV,
rd � 1.5–7.5 µm (kaolin dust). A good agreement between theory [30] and laboratory
experiments [14,16] is shown in Fig. 3. Theoretical analysis (based on both fluid and
kinetic models) and laboratory experiments confirmed that the presence of charged
dust causes to increase the phase speed, but causes to decrease the Landau damping.
The difference between the IAWs and DIAWs is that the IAWs are subject to ion
Landau damping, which is severe for Te � Ti, but this is not the case for DIAWs,
where wave-particle resonance (at phase speed equal to ion thermal speed) no longer
holds.

There are many space and laboratory dusty plasma situations, where the amplitude
of DIAWs is very large, and the linear theory is no longer valid. The large amplitude
DIAWs are found to propagate as either solitary or shock waves (SWs). We now
(in next two subsections) briefly explain theoretical and experimental observations
of solitary and shock structures associated with these DIAWs.

2.1. DIA solitary waves

We consider an unmagnetized dusty plasma whose constituents are inertial ions,
Boltzmann electrons and negatively charged immobile dust particles. The nonlinear
dynamics of the DIAWs, whose phase speed is much smaller (larger) than the
electron (ion) thermal speed, is governed by

∂ni

∂t
+

∂

∂x
(niui) = 0, (2.2)

∂ui

∂t
+ ui

∂ui

∂x
= −∂φ

∂x
, (2.3)

∂2φ

∂x2
= (1 − µ) exp(φ) − ni + µ, (2.4)



Discoveries of waves in dusty plasmas 7

where ni is the ion number density normalized by its equilibrium value ni0, ui is the
ion fluid speed normalized by Ci, and φ is the electrostatic wave potential normalized
by kBTe/e. The time and space variables are in units of the ion plasma period ωpi

−1

and the Debye radius λDm = (kBTe/4πni0e
2)1/2, respectively.

To study the small but finite amplitude DIA SWs, we use the reductive perturba-
tion method [87], i.e. we first introduce the stretched coordinates:

ζ = ε1/2(x − Vpt),

τ = ε3/2t,

}
(2.5)

where ε is an expansion parameter (0 < ε < 1) and Vp =ω/kCi, and then expand
ni, ui and φ in power series of ε:

ni = 1 + εn
(1)
i + ε2n

(2)
i + · · · ,

ui = 0 + εu
(1)
i + ε2u

(2)
i + · · · ,

φ = 0 + εφ(1) + ε2φ(2) + · · · .

⎫⎪⎬
⎪⎭ (2.6)

We then develop equations in various powers of ε. To the lowest order in ε, (2.2)–(2.4)
give n

(1)
i = u

(1)
i /Vp, u

(1)
i =φ(1)/Vp and Vp = 1/

√
1 − µ. To the next higher order in ε,

we obtain a set of equations (for n(2)
i , u(2)

i and φ(2)), which reduces to a Korteweg-de
Vries (K-dV) equation,

∂φ(1)

∂τ
+ Aφ(1) ∂φ

(1)

∂ζ
+ B

∂3φ(1)

∂ζ3
= 0, (2.7)

where

A =
3

2
√

1 − µ

(
2

3
− µ

)
, (2.8)

B =
1

2(1 − µ)3/2
. (2.9)

Now, for a frame moving with a speed U0, the stationary SW solution of (2.7) is

φ(1) =

(
3U0

A

)
sech2

[√
U0

4B
(ζ − U0τ)

]
. (2.10)

It is obvious from (2.8) and (2.10) that for µ < (>)2/3, a dusty plasma supports
compressive (rarefactive) DIA SWs, which are associated with a positive (negative)
potential, and that the amplitude and the width of these SWs depend on U0 and
µ. It is also obvious that as U0 increases, the amplitude (3U0/A) increases, but
the width (

√
4B/U0) decreases. The variation of amplitude and width with µ has

been graphically shown by many authors during last few years (e.g. Mamun and
Shukla [55]).

To study the arbitrary amplitude DIA SWs [32] by the pseudo-potential approach,
we make all the dependent variables depend only on a single variable ξ = x − Mt,
where M is the DIA SW speed normalized by Ci, use the steady state condition,
impose the appropriate boundary conditions for localized solitary structures, namely
ni → i, ui → 0, φ → 0 and dφ/dξ → 0 at ξ → ±∞ and finally reduce (2.2)–(2.4) to a
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single equation of the form [88, 89]

1

2

(
dφ

dξ

)2

+ V (φ) = 0, (2.11)

where

V (φ) = 1 − µ + M2 − µφ − (1 − µ) exp(φ) − M2

√
1 − 2φ

M2
. (2.12)

The integration constant is chosen in such a way that V (φ) = 0 at φ= 0. Equation
(2.11) represents an ‘energy integral’ for an oscillating particle of unit mass, with
pseudo-position φ, pseudo-time ξ and pseudo-potential V (φ). We note that M is
not the exact Mach number, because it is normalized by Ci, which is not the exact
phase speed of linear DIAWs.

We can find that V (φ) = dV (φ)/dξ = 0 at φ= 0. Therefore, SW solutions of (2.11)
exist if (i)

(
d2V/dφ2

)
φ= 0

� 0, so that the fixed point at the origin is unstable (‘equal’

sign corresponds to an unstable point, at least, on one side), and (ii) V (φ) < 0, when
0 > φ > φmax for the compressive DIA SWs and φmin < φ < 0 for the rarefactive
DIA SWs, where φmax (φmin) is the maximum (minimum) value of φ for which
V (φmax) =V (φmin) = 0. The condition (i) is satisfied when

M � Mc = Vp =
1√

1 − µ
. (2.13)

To examine whether the condition (ii) is satisfied or not, one has to directly examine
the pseudo-potential V (φ), at least, for the study of the arbitrary amplitude DIA
SWs. Bharuthram and Shukla [32] have investigated the properties of the arbitrary
amplitude DIA SWs by analyzing the pseudo-potential V (φ). They have found that
for µ < 2/3 only compressive DIA SWs exist, but for µ > 2/3, compressive DIA
SWs coexist with rarefactive ones. The small as well as large (arbitrary) amplitude
DIA SWs have been rigorously investigated by many others for different dusty
plasma situations, e.g. non-planner geometry [55], adiabaticity of electrons and
ions [68], non-thermal electron distribution [74], electronegative dusty plasma [75]
etc. The basic features of the DIA SWs are experimentally identified by Nakamura
and Sharma [22]. The experimentally observed basic features (speed, amplitude and
width) of the DIA SWs are shown in Fig. 4. We note that no rarefactive DIA SW
is observed under laboratory conditions of Nakamura and Sharma [22], where µ is
less than its critical value (2/3) for the existence of rarefactive SWs (rarefaction of
ion number density).

2.2. DIA shock waves

To study DIA shock waves, we consider a dissipative dusty plasma system where
dissipation may arise from either kinematic viscosity [19, 46] or dust charge fluctu-
ation [53, 57]. The nonlinear dynamics of the DIAWs, whose phase speed is much
smaller (larger) than the electron (ion) thermal speed, in such a dissipative dusty
plasma system is, therefore, described by (2.2), (2.4) and

∂ui

∂t
+ ui

∂ui

∂x
= −∂φ

∂x
− ηi

∂2ui

∂x2
, (2.14)

where ηi = µi/ωpiλ
2
Dm with µi being the kinematic viscosity.
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Figure 4. Mach number (vertical-axis of right figure) and normalized (normalized by λDe)
width (vertical-axis of left figure) versus normalized height (ion number density compression
normalized by electron equilibrium number density) of the DIA SWs (Nakamura and Sharma
[22]): sold curve (theoretical) and solid circles (experimental) for ni0/ne0 = 1.6, i.e. µ= 0.375.

Now, using the same stretched co-ordinates (defined by (2.5)) and expansion series
(defined by (2.6)), and following the same technique as we have used in the previous
section, one can readily obtain the following K-dV-Burgers equation:

∂φ(1)

∂τ
+ Aφ(1) ∂φ

(1)

∂ζ
+ B

∂3φ(1)

∂ζ3
= C

∂2φ(1)

∂ζ2
, (2.15)

where A, B and C are, respectively, given by (2.8), (2.9) and C = ηi0/2, in which
ηi0 is defined by ηi = ε1/2ηi0. An exact analytical solution of (2.15) is not possible.
However, we can deduce some approximate analytical solutions of (2.15) by using the
transformation ξ = ζ−U0τ, the steady-state condition and the appropriate boundary
conditions, viz. φ → 0, dφ/dξ → 0, d2φ/dξ2 → 0 at ξ → ∞. The latter allow us to
express (2.15) as

B
d2φ

∂ξ2
− C

dφ

dξ
+

A

2
φ2 − U0φ = 0, (2.16)

where φ=φ(1) is used just to avoid writing superscripts again and again. To analyze
(2.16), we can use a simple mechanical analogy [90] based on a fact that it has a
form of an equation of motion for a pseudo particle of mass B, of pseudo time ζ

and pseudo position φ in a force field with potential

V (φ) =
A

6
φ3 − U0

2
φ2, (2.17)

and a frictional force with the coefficient C . If the frictional force is absent, the
quasi-particle entering from the left will go to the right-hand side of the well (φ < 0),
reflect and return to φ= 0, thus making a single transit. This corresponds to the
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DIA SWs defined by (2.10). However, as in (2.16), a frictional force is practically
present, i.e. the particle suffers a loss of energy, it will never return φ= 0, but will
oscillate about some negative value of φ corresponding to the minimum of V (φ).
We assume that at pseudo time ξ = ∞, the quasi-particle is located at the coordinate
origin, i.e. φ(∞) = 0, and at pseudo time ξ = −∞, the quasi-particle is located at
a point corresponding to the minimum of V (φ), i.e. φ(−∞) = 2U0/A. Thus, the
solution of (2.16) describes a shock wave whose speed U0 is related to the extreme
values φ(∞) = 0 and φ(−∞) = 2U0/A by φ(−∞) − φ(∞) = 2U0/A.

The nature of these shock structures depends on the relative values between the
dispersive and dissipative coefficients B and C . If the value of C is very small, the
energy of the particle decreases very slowly, and the first few oscillations at the wave
front will be close to SWs defined by (2.10). However, if the value of C is larger
than a certain critical value, the motion of the particle will be aperiodic, and we
obtain a shock wave with a monotonic structure.

We now determine the condition for monotonic and oscillatory shock profiles by
investigating the asymptotic behavior of the solutions of (2.16) for ξ → −∞. We
first substitute φ(ξ) =φ0 +Φ(ξ), where Φ�φ0, into (2.16), and then linearize it with
respect to Φ in order to obtain

B
d2Φ

∂ζ2
− C

∂Φ

∂ζ
+ U0Φ = 0. (2.18)

The solutions of (2.18) are proportional to exp(pξ), where p is given by

p =
C ±

√
C2 − 4BU0

2B
. (2.19)

It turns out that the shock wave has a monotonic profile for Sc =C/2
√
BU0 > 1

and an oscillatory profile for Sc < 1.
The limit Sc�1 gives rise to a simple Burgers equation ((2.15) with B = 0), which

can be directly obtained by using different stretched co-ordinates [71–73]

ζ = ε(x − Vpt),

τ = ε2t.

}
(2.20)

The advantage of this new stretched co-ordinates is that it does not require the
additional assumption ηi = ε1/2ηio, and so C becomes C = ηi/2 . The solution of this
Burgers equation ((2.15) with B = 0) is given by

φ(1) � U0

A

[
1 − tanh

{
(ξ − U0τ)

U0

2C

}]
. (2.21)

It is obvious from (2.8) and (2.21) that for µ < (>)2/3, a dusty plasma supports
compressive (rarefactive) DIA shock structures, which are associated with a positive
(negative) potential, and that the amplitude of these shock structures depends on
U0 and µ, whereas their width depends on U0 and ηi. It is also obvious that as U0

increases, the amplitude (3U0/A) increases, but the width (2C/U0) decreases. The
variation of amplitude with µ is the same as that for the DIA SWs. However, the
shock width is directly proportional to ηi. The properties of DIA shock structures,
which are formed due to either kinematic viscosity [19,46] or dust charge fluctuation
[53,57], have been rigorously investigated by many others for different dusty plasma
situations [46, 53, 57, 61, 73, 76].
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Figure 5. The variation of the plasma number density with time at a fixed probe position
(12 cm) showing the transition of an oscillatory shock to a monotonic shock when the dust
particle number density is increased (Nakamura et al. [19]).

The basic features of DIA SWs are experimentally identified by Nakamura
et al. [19]. The experimentally observed DIA shock structures [19] are shown in
Fig. 5. It reveals that the oscillatory wave structure behind the shock becomes less
in number with increasing the dust particle number density, and finally completely
disappears at a sufficiently high dust particle number density leaving only the
laminar shock front. The shock speed also increases with increasing the dust particle
number density. It is also noted that the particle density behind the shock remains
constant, although the amplitude of the shock front (steepened part) seems to
decrease when the dust particle number density is increased. The effect of the dust
particle number density on the ion-acoustic compressional pulses has also been
experimentally studied by Luo et al. [20], who observed a steepening of the ion-
acoustic pulses as they propagated through a dusty plasma if the percentage of the
negative charge in the plasma on the dust grains was about 75% or more.

3. DA waves
Rao et al. [28] theoretically predicted the existence of extremely low-phase velocity
(in comparison with the electron and ion thermal speeds) DAWs in an unmagnetized
dusty plasma whose constituents are an inertial charged dust fluid and Boltzmann
ions and electrons. Thus, in the DAWs the inertia is provided by the dust particle
mass and the restoring force comes from the pressures of ions and electrons. The
dispersion relation for the DAWs, whose phase speed (ω/k) is much smaller (larger)
than the ion (dust) thermal speed, is given by [28]

ω

k
=

Cd√
1 + k2λ2

D

, (3.1)
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Figure 6. A typical single-frame image of a dust-acoustic wave pattern recorded in the video
camera (Barkan et al. [13]).

where λD = (λ−2
De + λ−2

Di )
−1/2 is the global screening length, and Cd =ωpdλD is the

dust-acoustic speed. It is obvious that one cannot obtain the DAWs without the
consideration of dust dynamics. The theoretical prediction of Rao et al. [28]
has been conclusively verified by a number of laboratory experiments [13, 18].
The experimental conditions for observation of DAWs [13, 18] are ne � ni �
108–109 cm−3, Te � 2–3 eV, Ti � 0.025 eV, rd � 1–7 µm (kaolin dust), Zd ∼ 103 and
nd � 105 cm−3. The image of these experimentally observed DAWs is shown in Fig. 6.
Theoretical analysis [28] and laboratory experiments [13, 18] confirmed that the
DAWs, which are observed even with naked eyes, are very low-frequency (∼15 Hz)
waves, whose speed and wavelength are ∼9 cm s−1 and ∼0.6 cm, respectively.

3.1. DA solitary waves

We consider a three-component dusty plasma system consisting of negatively charged
dust and Boltzmann-distributed ions and electrons. The nonlinear dynamics of the
low-phase speed (lying between the ion and dust thermal speeds) DAWs is governed
by [28]

∂nd

∂t
+

∂

∂x
(ndud) = 0, (3.2)

∂ud

∂t
+ ud

∂ud

∂x
=

∂ϕ

∂x
, (3.3)

∂2ϕ

∂x2
= nd −

(
1

1 − β

)
e−ϕ +

(
β

1 − β

)
eαϕ, (3.4)

where nd is the dust number density normalized by nd0, ud is the dust fluid speed
normalized by cd = (ZdkBTi/md)

1/2, ϕ is the electrostatic wave potential normalized
by kBTi/e, β = ne0/ni0 and α=Ti/Te. The time and space variables are in the units
of the dust plasma period ωpd

−1 and the Debye length λDd = (kBTi/4πZdnd0e
2)1/2,

respectively.
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To study small but finite amplitude DA SWs, we use the reductive perturbation
method [87], i.e. we first employ the stretched coordinates:

ζ = ε1/2(x − vpt),

τ = ε3/2t,

}
(3.5)

where vp = ω/kcd, and expand nd, ud and ϕ in power series of ε:

nd = 1 + εn
(1)
d + ε2n

(2)
d + · · · ,

ud = 0 + εu
(1)
d + ε2u

(2)
d + · · · ,

ϕ =0 + εϕ(1) + ε2ϕ(2) + · · · ,

⎫⎪⎬
⎪⎭ (3.6)

and finally develop equations in various powers of ε. To the lowest order in ε, (3.2)–
(3.4) give n

(1)
d = u

(1)
d /vp, u

(1)
d = −ϕ(1)/vp and vp = [(1 − β)/(1 + αβ)]1/2. To the next

higher order in ε, we obtain a set of equations which deduces to a K-dV equation

∂ϕ(1)

∂τ
+ Adϕ

(1) ∂ϕ
(1)

∂ζ
+ Bd

∂3ϕ(1)

∂ζ3
= 0, (3.7)

where

Ad = −
v3
p

(1 − β)2
[1 + (3 + αβ)αβ +

1

2
β(1 + α2)], (3.8)

Bd =
v3
p

2
. (3.9)

Now, for a frame moving with a speed u0, the stationary SW solution of (3.7) is

ϕ(1) =

(
3u0

Ad

)
sech2

[√
u0

4Bd

(ζ − u0τ)

]
. (3.10)

It is obvious from (3.8) and (3.10) that Ad is always negative for all possible values
of α and β, and that the plasma system, under consideration, supports only SWs
with ϕ < 0, but does not support any SW with ϕ > 0. It is also obvious that the
amplitude and width of these SWs depend on u0, α and β. It is also obvious that as
u0 increases, the amplitude (3u0/Ad) increases, but the width (

√
4Bd/u0) decreases.

The variation of the amplitude and width with α and β have been graphically shown
by Mamun [43].

To study the arbitrary amplitude DA SWs [38, 39, 43] by the pseudo-potential
approach [88, 89], we make all the dependent variables depend only on a single
variable ξ = x−Mt, where M is the DA SW speed normalized by cd, use the steady
state condition, impose the appropriate boundary conditions for localized solitary
structures, namely nd → i, ud → 0, φ → 0 and dϕ/dξ → 0 at ξ → ±∞, and reduce
(3.2)–(3.4) to an energy integral [88, 89]

1

2

(
dϕ

dξ

)2

+ V (ϕ) = 0, (3.11)
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where

V (ϕ)= M2 +
1

1 − β
+

β

α(1 − β)
− M2

√
1 +

2ϕ

M2

−
(

1

1 − β

)
exp(−ϕ) −

[
β

α(1 − β)

]
exp(αϕ). (3.12)

The integration constant is chosen in such a way that V (ϕ) = 0 at ϕ= 0. We note
that M is not the exact Mach number, because it is normalized by cd, which is not
the exact phase speed of the linear DAWs. We can find that V (ϕ) = dV (ϕ)/dξ = 0 at
ϕ= 0. Therefore, SW solutions of (3.11) exist if (i)

(
d2V/dϕ2

)
ϕ=0

� 0, so that the

fixed point at the origin is unstable, and (ii) V (ϕ) < 0, when 0 > ϕ > ϕmax for the
compressive DA SWs and when φmin < φ < 0 for the rarefactive DA SWs, where
ϕmax (ϕmin) is the maximum (minimum) value of ϕ, for which V (ϕmax) =V (ϕmin) = 0.
The condition (i) is satisfied when

M � Mc = vp =

√
1 − β

(1 + αβ
. (3.13)

To examine whether the condition (ii) is satisfied or not, one has to directly examine
the pseudo-potential V (ϕ) at least for the study of the arbitrary amplitude DA
SWs. Mamun et al. [38] and Mamun [43] have investigated the properties of
the arbitrary amplitude DA SWs by analyzing the pseudo-potential V (ϕ). They
have found that the dusty plasma, containing negatively charged dust, Boltzmann-
distributed electrons and ions, supports only DA SWs with negative potential,
corresponding to a hump in the dust density. The small as well as large (arbitrary)
amplitude DA SWs have been rigorously investigated for different dusty plasma
situations [39, 50, 56, 61, 69].

The DA SWs are experimentally observed by Bandyopadhyay et al. [24]. The
experimentally observed DA SWs are shown in Fig. 7. Theoretical analysis [28, 43]
and laboratory experiment [24] on DA SWs confirmed that DA SWs with a negative
potential, corresponding to a hump in the dust number density, are formed. The
amplitude of experimentally observed DA SWs is quite large, and hence to explain the
experimental observation of Bandyopadhyay et al. [24] the theory of DA SWs [38,43]
by pseudo-potential approach is more suitable than that by reductive perturbation
method [28].

3.2. DA shock waves

To study DA shock waves, we consider a dissipative (strongly coupled) dusty
plasma system where dissipation arises from strong correlation among highly charged
dust particles [49]. The nonlinear dynamics of the DAWs, whose phase speed is
much less (greater) than ion (dust) thermal speed, in such a dissipative strongly
coupled dusty plasma is governed by the well-known generalized hydrodynamic
(GH) equations [91, 92], i.e. (3.2), (3.4), and

(1 + τmDt)

[
nd

(
Dtud − ∂ϕ

∂x

)]
= ηl

∂2ud

∂x2
, (3.14)

where Dτ = 1 + τm∂/∂t, Dt = ∂/∂t + ud∂/∂x, τm is the viscoelastic relaxation time
normalized by the dust plasma period ω−1

pd and ηl = (τd/mdnd0λ
2
Dm)[ηb + (4/3)ζb] is
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Figure 7. Experimentally observed DA SWs at two different excited pulse voltage of 60 V
(left) and 120 V (right): distance (in mm) along the horizontal or x -axis and normalized dust
number (nd/nd0) along vertical or y-axis (Bandyopadhyay et al. [24]).

the normalized longitudinal viscosity coefficient (with ηb and ζb being the bulk and
shear viscosity coefficients, respectively). The description (along with the estimated
values) of these transport coefficients (τm, ηl , ηb and ζb) are available in the existing
literature [49, 71–73, 91–94].

Now, using the stretched co-ordinates [71–73],

ζ = ε(x − vpt),

τ= ε2t,

}
(3.15)

and expanding nd, ud and ϕ in a power series of ε as before, and following the
same technique as we have used in the previous section, one can readily obtain the
Burgers equation:

∂ϕ(1)

∂τ
+ Adϕ

(1) ∂ϕ
(1)

∂ζ
= Cη

∂2φ(1)

∂ζ2
, (3.16)

where Ad is given by (3.8), and Cη is given by Cη = ηl/2. Again, for a frame moving
with a speed u0, the stationary shock solution of (3.16) is given by

ϕ(1) � u0

Ad

[1 − tanh

[
(ξ − u0τ)

u0

2Cη

]
. (3.17)

It is obvious from (3.8) and (3.17) that the dusty plasma under consideration supports
the DA shock structures with a negative potential and that the amplitude of these
shock structures depends on u0, α and β, whereas their width depends on u0 and
ηl . It is also obvious that as u0 increases, the amplitude (2u0/Ad) increases, but the
width (2Cη/u0) decreases. The variation of amplitude with α and β is the same as
that for DA SWs. The width is directly proportional to ηl . The DA shock waves
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Table 5. Discoveries of some important waves in dusty plasmas.

Theory Experiment

Waves In By In By

DA 1990 Rao et al. [28] 1995 Barkan et al. [13]

DIA 1992 Shukla and Silin [29] 1996 Barkan et al. [14]

DL 1996 Melandsø [41] 1997 Homann et al. [15]

DIA shock 1999 Nakamura et al. [19] 1999 Nakamura et al. [19]

Luo et al. [20]

DIA SW 1992 Bharuthram and Shukla [32] 2001 Nakamura and Sharma [22]

DA SW 1990 Rao et al. [28] 2007 Bandyopadhyay et al. [24]

1996 Mamun et al. [38]

1996 Mamun [43]

DA Shock 2001 Shukla and Mamun [49] 2009 Heinrich et al. [25]

2004 Eliasson and Shukla [63]

2009 Mamun and Cairns [71]

DIC 1990 D’Angelo [11] 1995 Barkan et al. [12]

Figure 8. Shock-amplitude (δI/Iav) and shock-thickness (in mm) of experimentally observed
DA shock-like structures (Heinrich et al. [25]): distance (in mm) along the horizontal-axis
and shock-amplitude (circles or upper curve) and shock-thickness (squares or lower curve)
along the vertical-axis.

have been rigorously investigated by others for different dusty plasma situations
[53, 56, 61, 64, 71–73]. We note that the non-stationary DA shock-like structures
predicted by Eliasson and Shukla [63] are associated with the self-steepening of
the negative potential in a weekly coupled dusty plasma. This self-steepening of
the negative potential, i.e. the formation of non-stationary DA shock-like structures
(after a certain time) is due to the nonlinear effects.

Recently, the DA shock-like structures are observed by Heinrich et al. [25]. The
basic features (amplitude and width) of these experimentally observed DA shock-like
structures are shown in Fig. 8.

4. Discussion
Our universe is full of dust, i.e. dust is almost everywhere, there is no branch of
space science where the physics of dust is not directly or indirectly involved. So we
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Table 6. Discoveries of dust crystals, Mach cones and dust voids.

Theory Experiment

Structures In By In By

Dust crystals 1986 Ikezi [79] 1995 Thomas et. al. [80]

Chu et. al. [81]

Hyashi et. al. [82]

Mach cones 1996 Havnes et al. [85] 1999 Samsonov et al. [84]

Dust voids 1999 Goree et al. [83] 2001 Thomas et al. [86]

cannot explain the physics of our universe without the role of dust. The physics of
mobile/immobile dust, which have variable size, charge and mass, arises unsolvable
complexities and makes the field of DPP very interesting (rapidly growing), and
infinitely large.

The presence of dust does not only modify the existing plasma wave spectra, but
also introduce new waves, e.g. DIA, DA, DL etc, which are experimentally observed.
The physics of these waves must play an important significant role in understanding
the properties of localized electrostatic structures in space/laboratory dusty plasmas.
Theoretical and experimental discoveries of some important waves in dusty plasmas
are summarized in Table 5. The discoveries in dusty plasmas are not limited to
waves only. There are many other remarkable experimental discoveries, particularly
discoveries of dust crystals, Mach cones, dust voids etc. in strongly coupled dusty
plasmas. These are given in Table 6.

To conclude, for its infinitely large domain, versatile applications and unsolvable
complexities, the field of DPP has become a challenging research topic not only for
near future but also for a long period of time to come.
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