Waves and Instabilities in Dusty Plasmas

Bob Merlino

University of Iowa
Outline

• What is a dusty plasma?
• Where are dusty plasmas?
• Charging of dust particles
• Waves in dusty plasmas
Dusty Plasmas

• Dust represents much of the solid matter in the universe and this component often coexists with the ionized matter forming a dusty plasma.

• Dust is often present in laboratory plasmas as well either by choice or circumstance.
What is a dusty plasma?

plasma = electrons + ions

small particle of solid matter

• absorbs electrons and ions
• becomes negatively charged
• Debye shielding
Importance of Charged Dust

- the dust acquires an electrical charge and thus is subject to electromagnetic as well as gravitational forces
- the charged dust particles participate in the collective plasma processes
DUSTY PLASMAS

<table>
<thead>
<tr>
<th>Natural</th>
<th>Man-made</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Solar nebula</td>
<td>1. Microelectronic processing</td>
</tr>
<tr>
<td>2. Planetary rings</td>
<td>2. Rocket exhaust</td>
</tr>
<tr>
<td>3. Interstellar medium</td>
<td>3. Flames</td>
</tr>
<tr>
<td>5. Noctilucent clouds</td>
<td>5. H bomb</td>
</tr>
<tr>
<td>6. Lightning</td>
<td></td>
</tr>
<tr>
<td>7. Snow</td>
<td></td>
</tr>
</tbody>
</table>
Our solar system accumulated out of a dense cloud of gas and dust, forming everything that is now part of our world.

Rosette Nebula
A flame is a very weakly ionized plasma that contains soot particles.

An early temperature measurement in a dusty plasma.
Comet Hale-Bopp
Spokes in Saturn’s B Ring

Voyager 2
Nov. 1980

Cassini-Huygens
July 2004
Semiconductor Processing System

silane (SiH$_4$) + Ar + O$_2$ → SiO$_2$ particles
Semiconductor Manufacturing

Si

dust
Dusty Plasma
Dust Charging Processes

- electron and ion collection
- secondary emission
- UV induced photoelectron emission

Total current to a grain = 0

\[\sum I = I_e + I_i + I_{sec} + I_{pe} = 0 \]
The Charge on a Dust Grain

In typical lab plasmas \(I_{\text{sec}} = I_{\text{pe}} = 0 \)

Electron thermal speed \(\gg \) ion thermal speed so the grains charge to a negative potential \(V_S \) relative to the plasma, until the condition \(I_e = I_i \) is achieved.

\[
I_e = en_e \sqrt{\frac{kT_e}{m_e}} \exp\left(\frac{eV_S}{kT_e}\right) \pi a^2
\]

\[
I_i = en_i \sqrt{\frac{kT_i}{m_i}} \left(1 - \frac{eV_S}{kT_i}\right) \pi a^2
\]

\[
Q = (4\pi\varepsilon_o a) V_S
\]
Typical Lab Plasma

• For $T_e = T_i = T$ in a hydrogen plasma

$$V_s = -2.5 \ (kT/e)$$

• If $T \approx 1 \text{ eV}$ and $a = 1 \mu m$,

$$Q \approx -2000 \text{ e}$$

• Mass: $m \approx 5 \times 10^{12} \ m_p$
Dust Charge Measurements

Waves in dusty plasmas

• electrostatic dust ion-cyclotron waves (EDIC)
• dust ion acoustic waves (DIA)
• dust ion acoustic shocks (DIAS)
• dust acoustic waves (DA)
• Dust cyclotron mode
• Strongly coupled dusty plasmas
Effect of dust on plasma waves

- the presence of dust modifies the characteristics of the usual plasma modes, even at frequencies where the dust does not participate in the wave motion
- the dust provides an immobile charge neutralizing background

\[n_i = n_e + Z_d n_d \]
Dust Modes

• new, low frequency (~ few Hz) modes in which the dust grains participate in the wave motion appear in the dispersion relations

• the dust dynamics can be observed visually since the dust motion can be imaged and recorded on tape
Quasineutrality in dusty plasmas

• For low frequency waves the condition holds in both zero and first order
 \[n_i = n_e + Z_d n_d \]

• defining: \(\varepsilon \) we characterize the dusty plasma using the quantity \(\varepsilon Z_d \)

which is the fraction of negative charge on the dust grains
Fluid theory of Low frequency electrostatic waves in dusty plasmas

Three component plasma: electrons, ions, negative dust

\[I. \quad \frac{\partial n_\alpha}{\partial t} + \nabla \cdot (n_\alpha v_\alpha) = 0 \]

\[II. \quad n_\alpha m_\alpha \frac{\partial v_\alpha}{\partial t} + n_\alpha m_\alpha (v_\alpha \cdot \nabla) v_\alpha + q_\alpha n_\alpha \nabla \varphi \]
\[- q_\alpha n_\alpha (\vec{v}_\alpha \times \vec{B}) = 0 \]

\[III. \quad n_i = n_e + Z_d n_d \]
New Phenomena in Dusty Plasmas

• Unlike ordinary plasma, or plasmas containing negative ions, the charge on a dust grain is not constant, but fluctuates with the local plasma potential.

• This leads to new damping effects and new mechanisms for wave growth.
Fluid theory: mode frequencies

- for ion and electron modes we treat the dust as an immobile negative background
- for dust modes we can neglect the electron and ion inertia terms

For excitation conditions (growth rates, critical drifts, etc.) we must use kinetic theory
Dust Ion Acoustic Mode

• DIA: ion-acoustic wave modified by dust

• Dispersion relation:

\[v_p = \frac{\omega}{K_\parallel} = \left[\frac{kT_i}{m_i} + \frac{kT_e}{m_i (1 - \epsilon Z_d)} \right]^{1/2} \]

\[= C_{DIA} \]
DIA – Kinetic Theory

Dust acoustic waves are normally heavily Landau damped in a plasma with $T_e = T_i$. However the presence of negatively charged dust can drastically reduce the damping.

$$\gamma = -\omega_r \left(\frac{\pi}{8} \right)^{1/2} \left[\left(\frac{\delta m_e}{m_i} \right)^{1/2} + \left(\frac{\delta T_e}{T_i} \right)^3 e^{-\frac{T_e}{2T_i}} \right]$$

$$\delta = \frac{1}{1 = \varepsilon Z_d}$$
Dust Ion Acoustic Wave Experiment

Ta Hot Plate rotating dust dispenser
K oven
end plate

phase speed

\[\text{phase speed} \]

\[\epsilon Z_d \]

(a)

\[k_i/k_r \]

\[\epsilon Z_d \]

(b)
DIA - Conclusion

- Ion acoustic waves which would otherwise not propagate in a plasma with $T_e = T_i$ can propagate in a plasma with a sufficient amount of negatively charged dust.
- In the presence of negative dust, the wave phase velocity increases, decreasing the effect of ion Landau damping.
Experimental setup

(a) Dust Dispenser

(b) Rotating Dust Dispenser

HP, Cs, G, EP, B, LP, PG, n, z
DIA Shocks – results

NO DUST

- Density (arb. units)
- Time (0.5 ms/div)

DUST ON $\epsilon Z > 0.75$

- Density (arb. units)
- Time (0.5 ms/div)
DIA Shocks – results
EDIC: fluid theory

• Electrostatic ion-cyclotron waves excited by electron current along the magnetic field

• Propagate at large angle to \(B \)

\[
\omega^2 = \Omega_{ci}^2 + K^2 \left(\frac{kT_i}{m_i} + \frac{kT_e}{m_i(1 - \varepsilon Z_d)} \right)
\]

\[
= \Omega_{ci}^2 + K^2 C_{DIA}^2
\]
Electrostatic dust ion-cyclotron instability (EDIC)
EDIC- kinetic theory results

- EIC instability driven by current along B
- As more negative charge is carried by the dust, the critical drift needed to excite the instability decreases
- the instability is easier to excite in a dusty plasma

Dust acoustic waves

Dust dynamics

\[
\frac{\partial n_d}{\partial t} + \frac{\partial (n_d v_d)}{\partial x} = 0
\]

\[
m_d n_d \left[\frac{\partial v_d}{\partial t} + v_d \frac{\partial v_d}{\partial x} \right] + kT_d \frac{\partial n_d}{\partial x} - eZ_d n_d \frac{\partial \varphi}{\partial x} = 0
\]

Electrons & Ions

\[
kT_e \frac{\partial n_e}{\partial x} - en_e \frac{\partial \varphi}{\partial x} = 0;
\]

\[
kT_+ \frac{\partial n_+}{\partial x} + en_+ \frac{\partial \varphi}{\partial x} = 0
\]

Quasineutrality

\[n_+ = n_e + Z_d n_d\]
Combining the dust momentum equation with the plasma equations we see that (for the case of cold dust, $T_d = 0$).

\[
m_d n_d \frac{\partial v_d}{\partial x} = - \frac{\partial}{\partial x} \left(p_e + p_+ \right)
\]

where $p_e + p_+$ is the total pressure due to electrons and ions.

In the dust acoustic wave the inertial is provided by the massive dust particles and the electrons and ions provide the restoring force.
DA Dispersion relation

Monochromatic plane wave solutions
for $T_e = T_i = T$

\[f \lambda = C_{DA} = \sqrt{\frac{kT}{m_d} Z_d \frac{1 - \varepsilon}{1 + \varepsilon}} \]

where $\varepsilon = \frac{n_{d0}}{n_{+0}}$

\[\text{dust mass} \]
DUST IN A GLOW DISCHARGE

Vacuum vessel

Dust: kaolin (aluminum silicate)
Dust Acoustic Wave Image

wavefronts

DA Movie

AM 11:40
MAY 17 1995
Dust Acoustic Wave Dispersion Relation
Electrostatic dust cyclotron mode

- EDIC – involves cyclotron motion of the dust – *magnetized dust*
- Dispersion relation:

\[\omega^2 = \Omega_{cd}^2 + K_{\perp}^2 \left[\frac{kT_d}{m_d} + \varepsilon Z_d^2 \frac{1}{1 + (T_i / T_e)(1 - \varepsilon Z_d)} \right] \]

\[= \Omega_{cd}^2 + K_{\perp}^2 C_{DA}^2 \]
Gyroradius of dust particles

\[r_d = \frac{m_d v_d}{eZ_d B} \]

\[m_d \propto a^3, \quad Z_d \propto a, \quad v_d = \frac{\sqrt{kT_d}}{m_d} \]

\[r_d \propto a^{\frac{1}{2}} \]
Gyroradius of dust particles

![Graph showing the relationship between dust radius and gyroradius for different values of Td.](image)

- **Td = 0.025 eV**
- **Td = 1.0 eV**
- **Td = 0.1 eV**

B = 800 G

The graph illustrates how the gyroradius of dust particles changes with respect to their radius for different temperatures.
Solid state dusty plasmas

In a typical plasma
\[\Gamma = \frac{e^2 Z^2}{4 \pi \varepsilon_0 d k T_d} \ll 1 \]

- In a dusty plasma the interaction energy is multiplied by \(Z_d^2 \) which can be very large, so that \(\Gamma > 1 \) is possible.

- The dust grains may then arrange themselves in a regular lattice.
Coulomb Crystal

John Goree – Univ. Iowa

triangular lattice with hexagonal symmetry
Waves in strongly coupled dusty plasmas

• The presence of short scale correlations gives rise to novel modifications of the collective behavior
• Both compressional and transverse shear waves are possible
Compressional and shear waves
Summary/Conclusions

- Dusty plasmas are not uncommon in the lab and are ubiquitous in the Universe.
- Presence of dust modifies both the excitation and propagation of plasma waves.
- New, very low frequency dust modes.
- Collective fluctuations in dusty plasmas may provide mechanism for structuring.