

Coal runs civilization

Coal

- Energy content: 24 MegaJoules/kilogram=
- 2.4X10⁷ Joules/kg
- If the Sun were made of coal, how long could it "burn", providing its current power or luminosity?

- Mass of Sun = 2X10³⁰ kilograms
- Total energy content of "coal Sun"=(2X10³⁰)X(2.4X10⁷) =4.8X10³⁷ Joules
- Time the Sun could "keep this up" = energy/luminosity =4.8X10³⁷/3.8X10²⁶=1.3X10¹¹ seconds
- Is this a lot or a little????

A strong conclusion: energy drawn from coal burning, or any other chemical reaction, is *grossly* inadequate to power the Sun over geological timescales

