

Coordinates in the horizon system

- Altitude angle goes from 0d to 90d
- Azimuth angle goes from 0d to 360d

In Horizon System, we see motions in the sky

- The Sun rises in the east, reaches highest altitude angle due south, sets in the west
- When the Sun sets, it gets dark and we see the stars and planets
- The Moon """""
- The Moon rises at a different time each night and is seen against a different constellation
- The constellations in the evening sky are different in different seasons

The rising and setting of the Sun. Most people don't realize other astronomical objects do this as well

Seasonal differences in the night sky: go out tonight at 9 PM

- · Constellations Bootes in west
- · Bright star Vega straight overhead
- Constellation of Scorpius (with bright star Antares) low in southwest.
- Constellations of Pegasus and Andromeda just rising
- · Check it out with the help of star charts!

By the end of the semester, the situation will be entirely Different.

There is a phenomenon that could be called the "Parade of the Constellations"?

For new purposes, we need a different coordinate system

Analogy: I am riding my bike on a dirt road near Lone Tree, and want to describe to someone in London the location of a radio tower I see in the distance.

Question: what system of coordinates do I use?

A New Coordinate System: Celestial Coordinates

- The stars "stick together" and define their own reference system. The planets move with respect to them
- Celestial coordinates are Right Ascension and Declination
- Declinationlatitude <====
- <u>http://sohowww.nascom.nasa.gov/</u>