Lines on the sky

How the phenomena we see in the sky are linked to the “big picture” in the solar system.

Some of the things we learned last week

- The horizon coordinate system
- Astronomical basis of the day
- Annual changes in the night sky
- Astronomical basis of the year
- Astronomical basis of the seasons

The celestial sphere, the celestial pole, and the celestial equator

Think about which people at the north pole and on the equator (and in between). Which stars do they see pass through the zenith?

Two Lines on the Sky

- The ecliptic
- The celestial equator

Using these ideas, let’s consider a coordinate system which is fixed with respect to the stars (as opposed to our position)

Analogy: I am riding my bike on a dirt road near Lone Tree, and want to describe to someone in London the location of a radio tower I see in the distance.

Question: what system of coordinates do I use?

A New Coordinate System: Celestial Coordinates

- The stars “stick together” and define their own reference system. The planets move with respect to them
- Celestial coordinates are Right Ascension and Declination
- Right Ascension … Longitude
- Declination … latitude
- http://sohowww.nascom.nasa.gov/
Let’s see some star charts

http://www.memorybankinc.com/starmap/seti.htm

Astronomical Scientific Terms

• Meridian
• Celestial sphere
• Zenith
• Azimuth and altitude
• Ecliptic
• Celestial equator
• Right ascension and declination

Let’s have an illustration of the use of these coordinates

The first black hole discovered, Cygnus X-1, has coordinates of RA=19h 58m, dec=+35.2 d

Where is it on the sky?

Next topic: the solar system in a stellar context

Why are we doing this?

Look further out into space

The Solar System in a Stellar Context

How can the study of the solar system help us better understand stars, galaxies, etc.
Size scales in the solar system

- Basic unit: 1 meter
- 1 kilometer = 1000 meters = 0.6214 miles
- Diameter of Earth: 12756 kilometers (~ LA to Sydney)
- Closest object in space: Moon, 384,000 km average distance
- Most prominent object in astronomy: Sun, 149.6 million kilometers; 1 Astronomical Unit

The Terrestrial Planets

<table>
<thead>
<tr>
<th>Planet</th>
<th>Distance (au)</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.387</td>
<td>0.38</td>
</tr>
<tr>
<td>Venus</td>
<td>0.723</td>
<td>0.95</td>
</tr>
<tr>
<td>Earth</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Mars</td>
<td>1.523</td>
<td>0.53</td>
</tr>
</tbody>
</table>

The Jovian Planets

<table>
<thead>
<tr>
<th>Planet</th>
<th>Distance (au)</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jupiter</td>
<td>5.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Neptune</td>
<td>30.1</td>
<td>3.9</td>
</tr>
</tbody>
</table>

The Earth, Jupiter, and Saturn
A piece of Iowa in the distant solar system: the Voyager spacecraft

Voyagers launched in 1977: V1 at 114.2 au from Sun, V2 at 92.8 au. Both spacecraft still functioning.

Back to inner solar system: the dominant object in the solar system

The nearest star

Facts about the Sun

- Distance: 149.6 million kilometers = 1.496E+11 meters = 1 astronomical unit
- Radius = 695,990 kilometers = 6.960E+08 meters (109 times radius of Earth)
- If Earth were scaled to 1 foot globe size, the Sun would extend from goal line to 30 yard line at Kinnick stadium
- The Sun, not the planets (including Earth) is the dominant object in the solar system