
Magnitudes, Apparent and Absolute

- Apparent magnitude is the brightness of an object as it appears to you
- System due to Hipparchos (2nd century BC)
- Nowadays system made more precise
- Magnitude changes are "logarithmic", each magnitude means factor of 2.512 in brightness
- See Table 16.2 (p382)

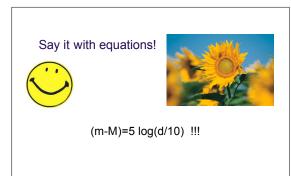
Table 16.2Magnitude differences and brightness ratios			
Magnitude Diff.	Brightness ratio		
0.0	1.0		
1.0	2.5		
2.0	6.3		
5.0	100.0		

Pick a bright (first magnitude) star as m=0, and assign magnitudes to all astronomical objects. Table 16.1

Object	Apparent magnitude	
Arcturus	-0.06	
Vega	0.04	
Altair	0.77	
Deneb	1.26	
Zeta UMa	2.27	
Theta Capricorni	4.07	
Limit of naked eye visibility: 5.0 - 6.0		

Two factors determine the brightness (apparent magnitude) of a star

- Intrinsic brightness (luminosity)
- Distance (the inverse square law)

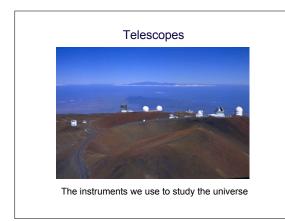

Absolute Magnitude: a measure of the intrinsic brilliance of a star

- Pick a star (any star)
- Imagine moving it to a distance of 10 parsecs
- The apparent magnitude *it would have* is its absolute magnitude
- The absolute magnitude is a distanceindependent quantity
- Look at Appendix 12 and Appendix 13 (the brightest stars) and think about the meaning of the absolute magnitudes

Why such a big deal about absolute magnitudes?

• The difference between the apparent magnitude (m) and the absolute magnitude (M) is a measure of the distance to an object

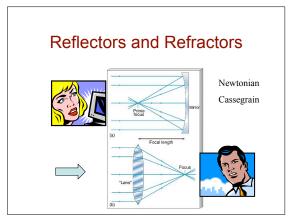
(m-M)	Distance	Distance
	(pc)	(ly)
0	10	32.6
1	15.8	51.5
2	25.1	81.8
5	100.0	326
10	1000	3260
20	100,000	326,000



If you know the absolute magnitude M of a star (or other astronomical object) and you measure its apparent magnitude m, you then know its distance. This difference (m-M) is called the *distance modulus*

What are the absolute magnitudes of some stars			
Star	M (abs. mag)		
Sun	4.8	Apparent	
Tau Ceti	5.8	magnitude of	
Altair	2.2	Jupiter right now: -2.9	
Vega	0.5	-2.5	
Deneb	-6.9		
UV Ceti A	+15.3		
Remember: this is how bright they would be if they were all lined up at the same distance			

More about telescopes


- What you will be looking through later in the semester
 Progress in astronomy
- astronomy would have been impossible without them

