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1 Summary of Chapter 2

There are a number of items from Chapter 2 that you should be sure to understand.

1.1 Terminology

A number of technical terms arise in this chapter for important concepts. Be sure
you understand what they mean.

• opposition

• inferior conjunction

• superior conjunction

• quadrature

• elongation

• Be sure you understand how do determine the distance (in astronomical units)
of an inferior planet and a superior planet.

1.2 Kepler’s Laws of Planetary Motion

Be sure you not only know what they are, but also how you can carry out computa-
tions using them. Know the critical elements of an ellipse.

2 Kepler’s Laws from Newtonian Mechanics

The point of Chapter 3 is to demonstrate how one can understand Kepler’s Laws of
Planetary Motion from very fundamental laws of physics, Newton’s Laws of Motion.
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2.1 Vectors

Vectors are the mathematical objects we use to discuss the motion of celestial objects.
Vectors have magnitude and direction. We write them as

~v = vê (1)

where ê is a unit vector pointing in the direction of the vector. You can also write
vectors in terms of their components in the different directions of a coordinate system
(like a Cartesian coordinate system).

~v = vxî+ vy ĵ + vzk̂ (2)

where î, ĵ, k̂ are unit vectors in the x, y, and z directions. Look at Figures 3.1
and 3.2 for an illustration of unit vectors.

2.2 Vector Algebra

Just like we can add, subtract, and multiply numbers, we can add, subtract, and
multiply vectors.

In high school, you learned how to add two vectors, ~A and ~B.

~C = ~A+ ~B (3)

You add the vectors head to tail.

2.3 Vector Multiplication

You can also multiply vectors together. There are two kinds of vector multiplication.
The dot product yields a number, not a vector.

~A · ~B = AB cos θ (4)

where θ is the angle between the vectors. The cross product of two vectors yields
another vector

~C = ~A× ~B = AB sin θk̂ (5)

where again θ is the angle between the two vectors, and k̂ is a unit vector perpendic-
ular to the plane containing ~A and ~B . The right hand rule tells you the direction of
the cross product, given ~A and ~B. Both the dot product and the cross product are
very important, and find applications in physics.
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3 Newton’s Laws of Motion

Newton’s Laws of Motion are the basis of the field of physics called classical mechan-
ics. Look on page 61 for their definition.

1. An object’s velocity (~v, a vector) remains constant unless a net outside force
acts upon it.

2. If a net outside force (~F , a vector)acts on an object, its acceleration is directly
proportional to the force and inversely proportional to the mass of the object.
In short,

~F = m~a (6)

where ~F is the outside force, m is the mass, and ~a is the acceleration (a vector).

3. Forces come in pairs, equal in magnitude and opposite in direction.

Acceleration is the time derivative of the velocity, ~a = d~v
dt

4 Newton’s Expression for the Gravitational Force

Consider a mass M , another mass m, separated by a vector ~r that points from M
and m, ~r = rr̂. The force exerted on m by M is then given by

~F = −GMm

r2
r̂ (7)

A force that acts along the vector separating the two objects is called a central
force.

In this course, we will restrict ourselves to cases where M � m (think of the Sun
and planets), but the general case M ' m is just as easy.

5 Derivation of Kepler’s Laws from Newton’s Laws

5.1 Kepler’s 2nd Law

Kepler’s 2nd Law is the easiest to derive, and so we deal with that one first (Ke-
pler obviously didn’t know this when he numbered his laws), and it interesting to
understand that it is a consequence of the conservation of angular momentum.
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Angular momentum is one of the most important concepts in physics. For an
object moving with respect to a coordinate system (think of a system whose origin
is the center of the Sun),

~L = m~r × ~v = ~r × (m~v) = ~r × ~p (8)

The linear momentum is given by ~p = m~v.
If we let θ be the angle between ~r and ~r, then

L = mvr sin θ (9)

If force is applied to an object, it can change the angular momentum.

d~L

dt
= ~T = ~r × ~F (10)

where ~T is the torque. If ~T = 0 , the angular momentum is constant, or conserved.
Let’s see what the torque is for a central force.

~T = ~r × ~F (11)

~T = ~r ×
(
GMm

r2

)
r̂ (12)

~T =

(
GMm

r2

)
~r × r̂ (13)

Since ~r × r̂ = 0, there is no torque exerted by a central force, and the angular
momentum is constant.

Let’s see what the consequences are of conservation of angular momentum. Look
at Figure 3.3. In a time interval dt the object of mass m moves, and sweeps out
an area dA. We use the result from geometry that the area of a triangle is

dA =
1

2
bh (14)

where b = r and h = v sin θdt, θ being the angle between ~r and ~v.
So,

dA =
1

2
bh =

1

2
rv sin θdt (15)

And
dA

dt
=

1

2
rv sin θ =

L

2m
(16)

So dA
dt

= C, a constant. This is Kepler’s 2nd Law. A nice illustration of Kepler’s 2nd
Law is given in Figure 2.18 of the book.
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5.2 Kepler’s 1st Law

Newton’s Laws can be used to show that the equation for an orbit, given by r(θ), is
described by Equation 3.34.

r(θ) =
L2

GMm2(1 + e cos θ)
(17)

The coordinates (r, θ) are polar coordinates centered on one of the focuses of the
ellipse. The parameter e is very important, and is called the eccentricity. Its signifi-
cance will be described shortly.

I think the derivation is too advanced for this course, but you can look at the
discussion on pp66 and 67 for yourself.

This is the equation for geometric figures called conic sections, and include an
ellipse, a parabola, or a hyperbola. Check out Figure 3.5.

Ellipses occur in the case of 0 ≤ e < 1. The geometry of an ellipse is shown in
Figure 3.6. Be sure you known the following terms which are illustrated in this
picture, or discussed in the text.

• major axis

• minor axis

• eccentricity

• focus

• true anomaly

5.2.1 Mean Size of an Orbit

While an ellipse is a precise description of an orbit, sometimes we want to know
the mean (or average) distance of the object m from M . The astronomical unit is
defined as the mean distance between the Sun and Earth. Let’s work out what this
is for an ellipse.

Look at Figure 3.7. Imagine putting dots along the orbit, and measuring the
distance between the focus to each dot, and averaging the values. What is this
number?

Let’s imagine organizing these points into sets of two points, one at (x, y) and the
other at (−x, y), as shown in Figure 3.8. Let r be the distance from the right-hand
focus to the first point, and r

′
the distance to the second point. The average distance

of these two points is then 1
2
(r + r

′
).
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We could also choose the other, left-hand focus to make our measurements. In
this case, the average distance of the two points from this second focus is 1

2
(ρ+ ρ

′
)

Now, one of the definitions of an ellipse is that it is the set of points in a plane
figure such that the sum of the distances from the point to the two focuses is the
same number, say A. We then have that

r + ρ = A = r
′
+ ρ

′
(18)

If you look at Figure 3.8 you can probably satisfy yourself that r
′

= ρ, so we
have

r + r
′
= A (19)

It only remains to determine the constant A. Since this constant applies to every
point on the ellipse, we can choose any one we want to determine A. We can make
life easy for ourselves by choosing the “perihelion” point on the x axis on the right
side. You can easily show that A = 2a, so

1

2
(r + r

′
) = a (20)

Notice that the mean distance doesn’t depend on x or y. If it doesn’t depend on
(x,y) for these two points, it won’t for an of the other points on the ellipse either,
so we can conclude that the average distance for all points on the ellipse is a. The
average distance of the object m from M is a.
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