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Abstract

After careful introduction and discussion of the concepts involved, pro-
cedures are developed to compute Racah and Clebsch-Gordan coefficients
for general r-fold tensor products of the U(N) groups. In the process,
the multiplicity of a given irreducible representation (irrep) in the di-
rect sum basis is computed, and generalized Casimir operators are intro-
duced to uniquely label the multiple irreps. Procedures to compute the
Gel’fand-Zetlin basis are also included, as the Clebsch-Gordan coefficients
are computed in this basis. Examples from SU(2), SU(3), and SU(4) are
provided.

1 Introduction and Background

In quantum mechanics, one describes systems as being in certain states. The
observable quantities of the system are then related to underlying symmetry
groups. For example, given the state of a hydrogen atom, an observable quantity
would be the value of the orbital angular momentum of the electron about the
proton. Angular momentum is a physical realization of the symmetry group of
rotational transformations, which can be related to the group SO(3), the group
of special orthogonal matrices over three dimensions, or the group SU(2), the
special unitary group over two dimensions.

Many other physical observables come from the unitary and special unitary
symmetry groups. In particular, all types of orbital and intrinsic angular mo-
mentum are related to SU(2). Isospin also comes from SU(2), being a subset
of the SU(3) flavor groups relating the various types of quarks: up, down, etc.
In addition, quark color belongs with an SU(3) group, and even higher SU(N)
groups arise in some circumstances.

Often one needs to couple various representations together. For example,
in the hydrogen atom, the electron has an intrinsic angular momentum (called
spin) and an orbital angular momentum. Thus to determine the total angular
momentum of the electron, one must combine the orbital angular momentum
and the intrinsic angular momentum. Each observable value of spin and orbital
angular momentum correspond to elements of irreducible representations (ir-
reps) of SU(2). Mathematically, this combining of spin and angular momentum
is the tensor product of representations of a group. Tensor products of irreps
are not generally irreducible, and thus can be written as a direct sum of their
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irreducible portions. One can look at the tensor product from the tensor prod-
uct basis (as a product of irreps) or can view the tensor product from the direct
sum basis (as the sum of its irreducible portions). Moving between the product
basis and the direct sum basis is the mathematical equivalent of combining the
constituent values to determine the total value.

The process is equivalent for any quantities obeying symmetry groups, and
can easily be generalized. Consider a physical system of r-number of quantities,
each an irrep of a U(N) or SU(N) group. Since for any N , SU(N) is a subgroup
of U(N), we need only consider U(N) groups at present. The SU(N) groups are
trivially related, as shall be later shown. The physical question of what possible
total values of the system can result from the r given values being combined,
is analogous to the question of what is the direct sum basis of a given r-fold
tensor product and what is the relation between elements of the tensor product
basis and elements of the direct sum basis.

This question is highly non-trivial, as it is further complicated by the possi-
bility of a given irrep occurring multiple times in the direct sum. The Casimir
operators labeling the irreps are then degenerate over this multiplicity, and thus
provide no well defined basis or basis labels among the space where the multi-
plicity occurs. We can restrict our attention to one particular irrep at a time in
the tensor product basis. Yet before one can consider either Racah coefficients
or Clebsch-Gordan coefficients, one must determine the multiplicity of the irrep
in question, i.e. number of times it occurs in the direct sum. This itself is,
in general, quite difficult [3]. One must also determine a basis and labels for
the multiplicity: that is, one must separate and label each multiple occurrence.
However, traditional Casimir operators are unable to do this.

This paper shows how to realize concrete representations of the irreps and
the multiplicity. Generalized Casimir operators will be introduced that both
determine and label bases related to coupling schemes of the groups in the
tensor product. Thus once the multiplicity is determined and given a labeled
basis, Racah and Clebsch-Gordan coefficients can finally be computed. Racah
coefficients are defined as the relation between coupling schemes, i.e. the change
between bases in the multiplicity labels. Clebsch-Gordan coefficients connect
the direct sum basis with elements of the tensor product basis and visa versa.
However, one challenge yet remains, as in the past there is has been no method
for computing concrete basis elements within any U(N) irrep for N > 2. This
paper gives procedures to compute a concrete realization the Gel’fand-Zetlin
basis, as well as methods for computing Clebsch-Gordan coefficients in this
basis.

2 Particular Case: SU(2)

2.1 Clebsch-Gordan Coefficients

In SU(2), states are usually labeled in Dirac notation by |j,m〉. Since angular
momentum is a vector operator, j is considered the magnitude of the angular
momentum operator, and m the component of the angular momentum in one
particular direction, usually chosen to be the z-direction. Mathematically, j
is related to the eigenvalue of a Casimir Operator and labels the irrep, while
m is the eigenvalue of an operator from the Lie algebra, usually chosen to be
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Jz corresponding with the above choice of direction. These form a maximally
commuting set, and thus fully label the states. One could equivalently consider
the vector space of the irrep. The j value would specify which space, and each
m value would refer to a specific basis element in that space.

For U(N) groups of larger N , we will need additional Casimir operators
to label the irrep and will need more than one Lie algebra element to form a
maximally commuting set to label the states. In the general Gel’fand-Zetlin
basis, each element is labeled by an entire tableau of eigenvalues. This basis
will be discussed in more detail in Section 3.3.

Consider then the product of two SU(2) states. An element of the tensor
product basis in Dirac notation is: |j1,m1〉 |j2,m2〉. A basis element of the
direct sum basis can be specified as |J,M ; j1, j2〉, with J being the irrep of
the total angular momentum, M being the component of the total angular
momentum, and j1, j2 denoting the irreps of the product. Since both the
tensor product basis and direct sum basis span the same space, there exists a
change of basis relating the two. The matrix elements of this change of basis
are precisely the Clebsch-Gordan coefficients. Specifically, a Clebsch-Gordan
coefficient is the overlap between a basis element in the direct sum basis with
an element of the tensor product basis. In Dirac notation, these coefficients are
denoted 〈J,M ; j1, j2|j1,m1〉 |j2,m2〉. Notational conventions vary, although one
convention is as follows:

〈J,M ; j1, j2|j1,m1〉 |j2,m2〉 = CJ,j1,j2
M,m1,m2

. (1)

Using the above notation, one can construct the direct sum basis in terms
of the tensor product basis as follows:

|J,M ; j1, j2〉 =
∑

m1,m2

|j1,m1〉 |j2,m2〉 〈j1,m1| 〈j2,m2|J,M ; j1, j2〉

=
∑

m1,m2

CJ,j1,j2
M,m1,m2

|j1,m1〉 |j2,m2〉 . (2)

For example, if j1 = j2 = 1
2 the Clebsch-Gordan coefficients give the following

change of basis:∣∣∣∣1, 1;
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〉)
. (3)

Clebsch-Gordan coefficients for r-fold tensor products could be defined as

〈J,M ; j1, j2, . . . jr|j1,m1〉 |j2,m2〉 . . . |jr,mr〉 . (4)

However, such definition does not take into account multiplicity of irreps. Fur-
thermore, these coefficients are very difficult to compute even for small values of
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r, and such formulas are not even known for larger values of r. The procedures
outlined in this paper do not determine a closed form expression, but rather
allow for the direct computation for any given tensor product.

To generalize to larger U(N) groups, one needs replace j with (several)
values labeling the irrep, and replace m with (several) values specifying a basis
element. Since the irreps are always labeled by eigenvalues of Casimir operators,
it is clear how to replace the j values. However, in larger U(N) groups there
is no longer a unique basis, and thus it is unclear what m generalizes to in
Equation (4). The Gel’fand-Zetlin basis is a preferable choice for the basis, but
until now there has been no general method of computing the basis. This paper
outlines how to compute such a basis, and later Equation (4) will be properly
generalized to hold for any U(N) group (see Equation (30)).

2.2 Racah Coefficients

For SU(2), the rules for computing what elements are in the direct sum from
a given tensor product are fairly simple. The m values simply add, and thus
M = m1 +m2. The J values are j1 +j2, j1 +j2−1, . . ., |j1−j2|. More precisely,

j1 ⊗ j2 = (j1 + j2)⊗ (j1 + j2 − 1)⊗ . . .⊗ (|j1 − j2|+ 1)⊗ |j1 − j2|. (5)

Thus for j1 = j2 = 1
2 , J can equal 1 or 0 since 1

2 ⊗
1
2 = 1⊕ 0.

Alternately, consider the three fold tensor product j1 = j2 = j3 = 1
2 . Show-

ing each step explicitly, and leaving off the kets for brevity, we have

1
2
⊗ 1

2
⊗ 1

2
=

(
1
2
⊗ 1

2

)
⊗ 1

2

= (1⊕ 0)⊗ 1
2

=
(

1⊗ 1
2

)
⊕
(

0⊗ 1
2

)
=

(
3
2
⊕ 1

2

)
⊕ 1

2

=
3
2
⊕ 1

2
⊕ 1

2
. (6)

Note the irrep 1
2 occurs twice, or with multiplicity two, in the direct sum. No

other Casimir operators from the Lie algebras of the irreps can distinguish the
two 1

2 irreps. However, one can consider the intermediate steps: one is the result
of 1⊗ 1

2 , while the other was the result of 0⊗ 1
2 . We could then distinguish the

two by the intermediate value, as say |J, jint〉1,2, where jint is the intermediate
value of j1 ⊗ j2. Thus the degeneracy in this case is broken and Equation (6)
yields ∣∣∣∣12

〉
⊗
∣∣∣∣12
〉
⊗
∣∣∣∣12
〉

=
∣∣∣∣32 , 1

〉
1,2

⊕
∣∣∣∣12 , 1

〉
1,2

⊕
∣∣∣∣12 , 0

〉
1,2

. (7)

Likewise, one could couple any other two first, say j2 with j3 or j1 with j3.
In this case, the states could be labeled |J, jint〉2,3 or |J, jint〉1,3. Likewise, in
an r-fold tensor product, a basis can be given by the r − 2 intermediate values
corresponding to a particular coupling scheme. Racah coefficients are defined as
the matrix elements relating the bases given by different coupling schemes. In
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particular, SU(2) Racah coefficients for 3-fold tensors products could be written
as

〈J, (j)(A)
int |J, (j)(B)

int 〉 , (8)

where (j)(A)
int labels a particular set of intermediate values in some coupling

scheme A and (j)(B)
int labels a particular set of intermediate values in a second

coupling scheme B.
The Wigner 6-, 9-, and 15-j symbols are (up to a phase) specific example

of Racah coefficients. (For example, see [9]) However, these Wigner symbols
are only defined for certain coupling schemes of 3, 4 and 5-fold tensor prod-
ucts. To compute more general coupling schemes is quite difficult, when even
possible. Usually, Racah coefficients are computed as sums of Clebsch-Gordan
coefficients. However, Clebsch-Gordan coefficients are themselves complicated
to compute and are basis dependent (for SU(2), this means they depend on
the m value), whereas Racah coefficients are basis independent. One should
avoid the difficulties of determining the basis when computing basis indepen-
dent quantities, and thus should compute Racah coefficients directly.

In addition, the method of using intermediate values to break the degeneracy
does not directly generalize to all U(N) groups. For example, the 2-fold product
of the eight dimensional irrep of SU(3) is degenerate. Yet, since this is a two fold
product, there are no apparent intermediate values to use. Later, generalized
Casimir operators will be introduced to address these issues. These operators
can be shown to be a direct generalization of the above intermediate value
method, whose eigenvalues correspond to the intermediate coupling values when
such exist.

The procedures outlined in this paper compute Racah and Clebsch-Gordan
coefficients independently. The basis independence of the final Racah coefficient
computation will be noted in Section 3.2. In the process generalized Casimir
operators specify the coupling scheme and label the basis states corresponding
to that coupling scheme. Thus the procedures allow the computation of Racah
coefficients between any choice of coupling schemes for any general r-fold tensor
product.

3 Theoretical Procedures

3.1 The Representation Space

The beginning of this section follows very closely the work published by the
author and his advisors. [2] To facilitate the computation of the coefficients,
we choose the concrete representation of polynomials over complex variables.
Let (m) := (m1,m2, . . . mN ) denote an N -tuple of integers with the so-called
dominant condition:

m1 ≥ m2 ≥ . . . ≥ mN ≥ 0. (9)

Consider next the vector space defined with the left covariant condition, as
follows:

V (m) = (f : CN×N → C | f(bz) = π(m)(b)f(z)), (10)

where f is a polynomial in N × N complex variables (denoted by z) and b
is an element of the subgroup B of lower triangular matrices. π(b) is a (one-
dimensional) representation of B, defined by π(m) = bm1

11 . . . bmN

NN . This repre-
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sentation space is a subset of an infinite dimensional Bargman-Seigel-Fock space
[5].

A representation of U(N) on V (m) is given by
(
R

(m)
g f

)
(z) = f(zg). Ac-

cording to the Borel-Weil theory [8], this representation is irreducible since (m)
satisfies the so-called dominant condition mentioned above. The inner product
on V (m) can be given as a differentiation inner product as follows:

(f, f) = f(D)f(z)
∣∣
z=0

, (11)

where f(D) denotes the differential operator obtained by replacing ziα by the
partial derivative ∂

∂ziα
for all 1 ≤ i, α ≤ N .

The condition given in Equation (10) can be divided into two conditions:
one regarding the diagonal elements of b, the other regarding the off-diagonal
elements. The diagonal condition can be written as f(bz) = f(z). Exam-
ples of polynomials satisfying this condition are minors of determinants. Let
∆i1i2...is

j1j2...js
(z) be the determinant formed by rows i1i2 . . . is and columns j1j2 . . . js

of the matrix z. Then ∆i1i2...is
j1j2...js

(bz) = ∆i1i2...is
j1j2...js

(z). All elements of V (m) can
then be written as linear combinations of products of minors of determinants.
Furthermore, we shall see later that the row indices contain information about
the representation, (since this action is defined to be on the left) while the col-
umn indices contain information referring to elements in the representation and
thus the physical content (since this action is defined to be on the right).

The off-diagonal covariance condition can be checked one element at a time
by letting the element become infinitesimally small. Then the covariant condi-
tion for element i, j can be written as:

(Li,jf)(z) = 0; (12)

Li,j :=
N∑

α=1

ziα
∂

∂zjα
. (13)

Thus the off-diagonal covariance condition can be given as those polynomials
that satisfy Equation (12) for all off-diagonal entries of b. When zeros occur in
(m), the setup can be simplified. Particularly, if there are p non-zero elements
of (m), then only p×N complex variables are needed.

Consider next an r-fold tensor product of the vector spaces given in Equation
(10), with labels (m)1, (m)2 . . . (m)r. Denote the product as

V (m)1 ⊗ V (m)2 ⊗ . . .⊗ V (m)r . (14)

Let pj be the number of nonzero entries in (m)j . One can then drop the zero
elements and form an n-tuple of non-zero integers

[m] = ((m1 . . .mp1)1, (m1 . . .mp2)2 . . . (m1 . . .mpr
)r), (15)

with n =
r∑

i=1

pi. Let P [m] be the vector space of polynomials over the matrix of

complex variables Z satisfying the diagonal left covariance condition:

P [m] = (F : Cn×N → C | F (dZ) = dm1
11 . . . dmn

nn F (Z)), (16)
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where d is a diagonal n × n matrix, d = diag(d11 . . . dnn) and Z is an n × N
matrix of complex variables, formed from the matrices of variables from each
V (m)j space. In physics, one often has the eight dimensional representation of
SU(3), denoted (2,1,0), tensored with itself. In this case [m] = (2, 1, 2, 1) and
Z is a 4× 3 matrix of complex variables.

In this language, SU(N) irreps are special cases of U(N) irreps, where the
last integer of the signature (m) is zero. Since all the procedures work for any
values of (m), the procedures are blind to whether the irreps are from U(N) or
SU(N), and our previous statement to just consider U(N) irreps was justified.

We are interested in finding maps from the irreducible representation space
V (M) to the product space given in Equation (14) so that Clebsch-Gordan and
Racah coefficients can be computed. This can be accomplished by determining
algorithmically maps from V (M) to P [m], and then consider how to restrict P [m]

to the subspace corresponding to the product space, V (m)1⊗V (m)2⊗. . .⊗V (m)r .
The space P [m] can be considered as the tensor product space of representations

P [m] = (m1, 0 . . . 0)⊗ (m2, 0 . . . 0)⊗ (mn, 0 . . . 0), (17)

considering [m] = [m1,m2, . . . mn]. P [m] contains the product space as a sub-
space, since it meets the diagonal covariance condition, but not the off-diagonal
covariance condition. The number of times the representation (M) occurs in
Equation (17) is given by a Frobenius reciprocity type theorem [5]. The left
diagonal condition becomes a weight condition on Gel’fand-Zetlin Tableau, and
the number of tableau is then equal to the multiplicity of V (M) ⊆ P [m].

These Gel’fand-Zetlin Tableau not only give the multiplicity in the space
P [m] [7], but also maps between the spaces V (M) and P [m]. A Gel’fand-Zetlin
tableau is an array of numbers, with n-numbers on the top row, n−1 numbers on
the next row, and subsequently one less number on each row, with the bottom
row containing just one number. Denoting the ith number on the jth row as
kj

i , each tableau must satisfy the betweenness relation

kj
i ≥ k

(j−1)
i ≥ kj

(i+1). (18)

Furthermore, define the weight of each row as

wj :=
(n−j+1)∑

i=1

kj
i . (19)

The weights must be related to [m] by wj −w(j−1) = m(n−j+1) with wn = kn
1 =

m1 and w1 − w2 = mn. To compute the multiplicity of V (M) in P [m], chose
the top row related to (M) in the following way. All representations of U(N)
of the form (m1 + l, m2 + l . . .mN + l) are equivalent for any positive integer
l. Thus choose the top row to be a representation equivalent to (M), such that
the top row has the appropriate weight, and append zeros such that the length
of the top row is n. The multiplicity of V (M) in P [m] is given by the number of
tableau satisfying the above conditions.

We can consider the example of the eight-dimensional representation of
SU(3) crossed with itself, [m] = (2, 1, 2, 1). Consider also the multiplicity of
the same representation in this product, i.e. choose (M) = (2, 1, 0). The weight
of the top row must be six (2 + 1 + 2 + 1 = 6) and include four numbers (the
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same as [m]), and thus we choose l = 1 and the top row to be (3, 2, 1, 0). The
weight of the second row must be 6 −m4 = 6 − 1 = 5, etc. Thus the possible
tableaux are as follows:

3 2 1 0
3 2 0

3 0
2

 ,


3 2 1 0

3 2 0
2 1

2

 ,


3 2 1 0

3 1 1
2 1

2

 ,


3 2 1 0

2 2 1
2 1

2

 . (20)

Each tableau generate maps from V (m) to P [m], given as products of dif-
ferential operators. Such operators act purely on the row indices of the minors
of determinants, and thus commute with the operators acting on the column
indices and do not affect the physical content. The differential operators can
be read from the tableau by shifting all values to the left, placing [m] as the
bottom row, and then replacing any blanks by the value in the same column,
bottom row. Thus the tableau in Equation (20) become

3 2 1 0
3 2 0 1
3 0 2 1
2 1 2 1

 ,


3 2 1 0
3 2 0 1
2 1 2 1
2 1 2 1

 ,


3 2 1 0
3 1 1 1
2 1 2 1
2 1 2 1

 ,


3 2 1 0
2 2 1 1
2 1 2 1
2 1 2 1

 . (21)

The differential operators are then directly correlated to the operations to
change each row to the row below. Thus in the first tableau in Equation (21),
row one is transformed to row two by moving one unit from column three to
column four, corresponding to L4,3. The subsequent transformations are two
units from column three to column three, (L2

3,2) and one unit from column one
to column two (L2,1). Thus the first tableau in Equation (21) corresponds to
the differential operator L2,1L

2
3,2L4,3. In general, each tableau yields a prod-

uct of left differential operators we can label
−→
(πL), where (πL)i is the product

of operators corresponding to the ith tableau. Let λ denote the number of
Gel’fand-Zetlin Tableau. Then for any f(Z) ∈ V (M), ((πL)if)(Z) ∈ P [m] for

each i, and (
−→
(πL) f)(Z) is a vector of λ linearly independent vectors spanning

the basis of f(Z) ∈ V (M) ⊆ P [m].
In this manner both the multiplicity of V (M) in P [m] and the maps from V (M)

to P [m] can be explicitly computed. However, P [m] only satisfies the diagonal
covariant condition. Thus the product space of Equation (14) is a subset of
P [m] and can be found by determining the appropriate linear combinations of
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(
−→
(πL) f)(Z) such that Equation (12) is satisfied for all necessary off-diagonal

operators.
To facilitate determining these linear combinations, one needs choose a poly-

nomial f(Z) ∈ V (M) on which to act. This choice, however, must be indepen-
dent of the basis for elements of V (M). The unique basis independent polynomial
which is annihilated by all raising operators is called the highest weight vector,
and such shall be our choice for f . Denote the highest weight vector fmax. The
highest weight vector of V (M) is given by:

fmax(Z) = (∆1
1)

M1−M2(∆12
12)

M2−M3 . . . (∆12...N
12...N )MN , (22)

where ∆i1i2...is
j1j2...js

is the determinant from rows i1i2 . . . is and columns j1j2 . . . js of
the matrix Z . Note it is no longer necessary to explicitly notate the functional
dependent on Z, and thus ∆i1i2...is

j1j2...js
is understood to be ∆i1i2...is

j1j2...js
(Z).

The off-diagonal condition, also called the Borel condition, will be solved if
we determine a matrix B such that Li,j(B ~(πL)fmax)(z) = 0 for the off-diagonal
elements bi,j . The column dimension of B is λ, the multiplicity of V (M) in
P [m]; the row dimension is η, is the multiplicity of V (M) in the tensor product
space. Thus solving the Borel condition and finding the matrix B not only
solves the difficult problem of determining the multiplicity, but also provides a
basis of the concrete representation of these multiple irreps. Once solved, one
has determined ~Φ, where

Φa := Ba,k(πL)kfmax (23)

and B is such that Li,jΦa = 0 for the necessary off-diagonal i, j. Specifically, in
our above example of (M) = (3, 2, 1, 0) and [m] = (2, 1, 2, 1), we have

(πL)1 = L2,1L
2
3,2L4,3,

(πL)2 = L3,1L3,2L4,3,

(πL)3 = L3,1L4,2,

(πL)4 = L3,2L4,1,

(24)

and
Φa = Ba,k(πL)kfmax. (25)

The matrix B is defined such that L1,2Φa = 0 and L3,4Φa = 0 for all a = 1 . . . 4.
The computational details of solving for the Borel condition matrix will be

discussed later in Section 5.1.4. Thus the above procedure determines both the
multiplicity of V (M) in the product space V (m)1 ⊗ V (m)2 ⊗ . . .⊗ V (m)r , as well
as determines ~Φ, a concrete realization of a basis of the space. Since in general
the elements of ~Φ are not orthogonal, the next step is to use generalized Casimir
operators to determine and label orthogonal bases in the product space. Thus
the orthogonal bases will can be given as linear combinations of the elements of
~Φ.

3.2 Racah Coefficients

Although the details of generalized Casimir operators are contained in Section
4, at this point it is helpful to note a few qualities about these operators. Specif-
ically, generalized Casimir operators are Hermitian operators, and there exist
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sets of mutually commuting operators that are both related to coupling schemes
and are sufficient to break any degeneracy [4].

Consider a complete set of mutually communing generalized Casimir op-
erators corresponding to a given coupling scheme. Enumerate the operators
as C(1), C(2), . . .. Since the generalized Casimir operators are Hermitian, their
eigenvalues are real and the eigenvectors are orthogonal. The orthogonal basis
in which all C(i) are diagonal is given by linear combinations of the elements
of ~Φ. One first determines the matrix representation of the Casimir operators
by letting them act on ~Φ. Let

[
C(i)

]
denote the matrix representation of the

operator C(i) and P be the matrix that diagonalizes all
[
C(i)

]
. By construction

P−1 [C(i)]P is diagonal for any i, and thus

C(i)P−1~Φ = P−1C(i)~Φ = P−1
[
C(i)

]
~Φ =

(
P−1

[
C(i)

]
P
)

P−1~Φ, (26)

where C(i) commutes with P−1 since C(i) is a differential operator and P is a
matrix of constant coefficients. P−1~Φ is then the orthogonal basis corresponding
to the given coupling scheme.

Denote two coupling schemes by A and B. There exists two copmlete sets
of generalized Casimir operators, {C(i)

A } and {C(i)
B }, that both specify the re-

spective coupling schemes and label the basis vectors. Let P(A) and P(B) be the
matrices that diagonalize all the operators for each respective coupling scheme.
Each element of the basis P−1

(A)
~Φ can be labeled by the eigenvalues of the set

{C(i)
A }, and likewise with coupling scheme B. Let (ηA) denote one of the sets of

eigenvalues labeling a basis element in coupling scheme A, and likewise let (ηB)
denote one of the sets of eigenvalues for coupling scheme B. Thus the two sets
of basis vectors for V (M) in the product space can be written as

∣∣(M), (ηA)
〉

and∣∣(M), (ηB)
〉
. Racah coefficients are just the overlap between the two orthogonal

basis, and can now be written succinctly as the matrix:

R =
〈
(M), (ηA)

∣∣ (M), (ηB)
〉
. (27)

Note that the above equation is the generalization of Equation (8), accounts
for the multiplicity, and allows for any general coupling scheme of any r-fold
product.

3.3 Gel’fand-Zetlin Basis

One of the main challenges of computing Clebsch-Gordan coefficients for general
r-fold tensor products is the lack of a unique basis for U(N) with N > 2. The
Gel’fand-Zetlin basis has long been described as a general basis for U(N), but
in the past it was not known how to directly compute the basis elements. Thus
the following algorithms to compute the basis are themselves a triumph, besides
providing a basis in which to compute Clebsch-Gordan coefficients.

One should not confuse this basis with the basis related to Racah coefficients.
Suppose a given irrep (M) occurs η times in the direct sum basis. The Casimir
Operators related to the signature (M) are all η-fold degenerate over the space
the multiple (M) irreps, and thus do not separate the multiple occurrences.
Generalized Casimir operators related to coupling schemes yields a basis among
this degeneracy and thus can separate and label the η different occurrences of
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(M). This is the basis discussed above in connection with Racah coefficients,
and can be thought of as an “external” basis. However, within each irrep are
various elements, and thus there exists a choice of basis among these internal
elements. This internal basis is the one we choose to be the Gel’fand-Zetlin
basis. To specify an element in the direct sum basis, one must both specify
which occurrence of the irrep (M) (labeled by generalized Casimir operators)
as well as which element in the irrep (labeled by a Gel’fand-Zetlin Tableau).
Part of the beauty of the procedures outlined in this paper is that all “external”
considerations regard the row indices of the minors, while all “internal” consid-
erations regard the column indices. Thus both can be considered separately as
they act on completely different spaces, and yet the action of the one on the
row indices is identical to the action of the other on the column indices.

The Gel’fand-Zetlin basis is precisely that basis in which each basis element
of an irrep (M) is labeled by a Gel’fand-Zetlin tableau. This correspondence
is one-to-one provided the following conditions. For the U(N) irrep (M), each
tableau contains N rows, the top row being the N -tuple (M) and the bottom
row being a single integer. Each row must obey the dominant condition and
the betweenness relations given in Equations (9) and (18). There is no weight
condition at present, since we are considering all elements and thus all possible
weights. The meaning of each row is related to considering U(N) ⊇ U(N−1) ⊇
. . . ⊇ U(1). The row with N ′ entries is the irrep signature of the U(N ′) subgroup
of the U(N) irrep.

For SU(2), we have signature (M) = (2j, 0). Thus there would be tableau(
2 j 0

k

)
, (28)

and the conditions will be satisfied for 0 ≤ k ≤ 2j. This can be related to the
usual |j,m〉 basis by letting k = 2(m + j). Note there are 2j + 1 tableau, as
expected, corresponding to the 2j + 1 dimensions of the irrep j.

For (2, 1, 0), the eight-dimensional irrep of SU(3), there are eight tableau
that meet the conditions. For example, three of these tableaux are: 2 1 0

2 1
2

 ,

 2 1 0
2 1

1

 ,

 2 1 0
2 0

0

 . (29)

To compute the representation of the Gel’fand-Zetlin in our representation
space V (M) , we begin by considering the highest weight vector. Since this vector
in unique, we can associate the highest weight vector in our representation
with the highest weight tableau. The highest weight vector in V (M) is given
by Equation (22). To recognize the highest weight vector, recall the earlier
discussion relating the changes between rows with lowering operators. The
highest weight tableau corresponds to the tableau with no lowering–each row
is just the row above with the last element removed. For (2, 1, 0) the highest
weight tableau is the first tableau listed in Equation(29) and the highest weight
vector in V (2,1,0) is ∆1

1∆
1,2
1,2.

Let h denote a certain tableau in a U(N) irrep (M). We want to de-
termine a representation of h in V (M) , which shall denoted as h(Z). Let
(w) = (w1, w2 . . . wN ) denote the weights of h, defined in Equation (19). The
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desired basis element is contained in the space of (M) embedded in the ten-
sor product (w1, 0, . . . 0) ⊗ (w2, 0, . . . 0) ⊗ (wN , 0, . . . 0). Again we construct all
tableau with the desired weight structure and read off the lowering operators
corresponding to each tableau. The only difference in this procedure is that
these operators are right operators acting on the column indices rather than left
operators acting on row indices, but this is just a matter of bookkeeping. We
then apply each product of lowering operators to the highest weight vector in
our V (M) space. Since each (wi, 0, . . . 0) only has one non-zero element, there
are no off-diagonal elements and thus no Borel condition to solve. We now

have ~Φ′ =
−→
(πR) fmax(Z) as a set of linearly independent vectors spanning the

(column) space of (M) in (w1, 0, . . . 0)⊗ (w2, 0, . . . 0)⊗ (wN , 0, . . . 0).
The next step is to pick an orthogonal basis. In this case, we will just be

using traditional Casimir operators, since we are working internal in the space
V (M) . The set of mutually commuting Casimir operators is fixed by the by the
formula relating the eigenvalues of Casimir operators to the tableau elements
[10]. Thus one diagonalizes with respect to the set which corresponds to the
tableau elements, which in turn determines the orthogonal basis. Each element
of this basis will correspond to a tableau with the same weight as the one of
interest. Using the formula to relate the eigenvalues with the tableau elements,
one can readily observe which polynomial representation corresponds with which
tableau. In this manner, all Gel’fand-Zetlin basis elements can be computed for
any U(N) irrep space.

3.4 Clebsch-Gordan Coefficients

We are finally in a position to discuss Clebsch-Gordan coefficients for general
r-fold U(N) tensor products. First, one should review notation. Previously,
we considered Clebsch-Gordan coefficients of the form in Equation (4). This
generalizes to, 〈

(M), h, (ηA) |(m1), h1〉 |(m2), h2〉 . . . |(mr), hr〉 , (30)

where (M), (m)i are the irrep labels; h, hi are the tableau specifying a basis
element in each space; and (ηA) are the eigenvalues labeling the multiplicity,
corresponding to a coupling scheme A. Since we have concrete polynomial
representations for both the left and right side of this inner product, all that
remains is just to choose the best computational method for carrying out the
inner product. The author’s implementation of the procedures returns a vector,
the ith element corresponding to the ith set of values (ηA).

One should note that in order for the coefficient to be non-zero, then for
every jth row, the sum of the jth row in tableau h must correspond to the sum
of all the jth rows of all the hi. For SU(2) this reduces to the well known rule
of thumb that the total m value is the sum of the m values being combined.

4 Generalized Casimir Operators

4.1 Background and Notation

A brief aside into the details of generalized Casimir operators is of worth. More
explicit consideration is given in [1] and [6]. Traditional Casimir operators are
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defined as Hermitian operators which are polynomials in a given Lie algebra and
commute with all elements of the algebra. Thus Casimir operators are always
diagonal in any representation. Furthermore, Casimir operators are multiplies
of the identity if and only if the representation is irreducible. The number of
linearly independent Casimir operators is known as the rank of the Lie algebra.
For U(N), the rank is N and the values in the N -tuple (M) are directly related
to the eigenvalues of the N Casimir operators.

In the representation spaces outlined in Section 3.1, Casimir operators can
be written as products of the left differential operators Li,j , as in Equation
(13). Note, that since we are considering V (M) contained in the product space
V (m)1 ⊗ V (m)2 ⊗ . . .⊗ V (m)r , all traditional Casimir operators from any of the
spaces will be multiples of the identity. generalized Casimir operators are sim-
ilarly defined as Hermitian operators which are polynomials in the Lie algebra
elements and commute with all the Lie algebra elements. However, generalized
Casimir operators mix multiple irreps in the product space, rather than acting
solely on single irrep spaces V (m)i . It has been proven that the there exist suffi-
cient generalized Casimir operators to fully break any degeneracy in the product
space [4].

Consider again the general product space V (m)1⊗V (m)2⊗ . . .⊗V (m)r . Poly-
nomials in this space will be over the variables specified by a matrix Z. Note
that Z has n = p1 + p2 + . . . + pr rows, as in Equation (15). Also note that
the first p1 rows corresponds to V (m)1 , the next p2 rows correspond to V (m)2 ,
and so forth. All possible left differential operators Li,j given in Equation (13)
can be considered as part of an array, with each of i and j ranging from 1 to
n. This array can be divided into r × r-blocks. Denote blocks by [L]i,j , where
each block [L]i,j is pi rows by pj columns. Thus [L]i,i contain all of the left
differential operators acting purely on space V (m)i , whereas block [L]i,j mixes
from space V (m)i to space V (m)j . It has been shown [7] that operators given as
the trace of sums of products of such blocks are generalized Casimir operators,
if such operators are Hermitian and if each product has the form

[L]i1,i2 [L]i2,i3 . . . [L]id,i1 (31)

for a product of d blocks. It can be shown that the adjoint of such an operator
is obtained by inverting the order of the indices in each product. Thus one can
easily test whether an operator in this form is Hermitian.

For example, consider the three fold tensor product with (m)1 = (m)2 =
(m)3 = (2, 1, 0), and (M) = (4, 3, 2). As previously discussed, this is the eight-
dimensional representation of SU(3) sitting in the 3-fold tensor product of it
with itself. Then p1 = p2 = p3 = 2 and n = 6. Thus the array of all Li,j is a
p × p = 6 × 6 array, divided into a r × r = 3 × 3 array of 2 × 2 blocks. The
following are all generalized Casimir operators:

[L]1,2[L]2,1,

[L]1,2[L]2,2[L]2,1,

[L]1,2[L]2,3[L]3,1 + [L]1,3[L]3,2[L]2,1. (32)

Note that the operator [L]1,2[L]2,3[L]3,1 is not Hermitian, but its adjoint is
[L]1,3[L]3,2[L]2,1 and thus the sum [L]1,2[L]2,3[L]3,1 + [L]1,3[L]3,2[L]2,1 is Hermi-
tian.
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A generalized Casimir operator is said to be of degree d if each product of
blocks contains exactly d blocks. This is equivalent to stating that the operator
is the sum of products of exactly d left differential operators. For traditional
Casimir operators in U(N), operators with degree greater than N can be ex-
pressed as linear combinations of Casimir operators with degrees less than or
equal to N . For generalized Casimir operators, it is also known that there exists
an upper bound Ñ , of which operators with degree greater than Ñ are not lin-
early independent from those of degree equal or less than Ñ . In practice, often
Ñ = N , but the exact relation in general has yet to be proven. Since there
exists an upper bound, methods based on iteratively increasing the degree will
eventually break all degeneracy as long as a sufficient number of operators of
each degree are considered.

4.2 Commutation Relations

Based on the definition given in Equation (13), one can easily verify the following
result:

[Li,j , Lk,l] = δj,kLi,l − δi,lLk,j . (33)

Since the set of row indices (which the Li,j act on) are disjoint for each space
(m)k, the above equation equivalently holds for blocks [L]i,j . Note that each
product in an arbitrary generalized Casimir operator of degree d can also be
written as:

tr ([L]u1,u2 [L]u2,u3 . . . [L]ud,u1)

=
∑

i1∈u1

. . .
∑

i2∈u2

. . .
∑

id∈ud

Li1,i2Li2,i3 . . . Lid,i1 , (34)

where in the first sum i1 ranges over the pu1 values corresponding to (m)u1 , and
so forth.

A few special commutation relations are worthy of note:

[Lk,k, Li,j ] = Li,j(δi,k − δi,j) (35)
[(Lk,k)a, Li,j ] = Li,j ((Lk,k + δi,k − δi,j)a − (Lk,k)a) (36)

[(Lk,k)a, C] = 0. (37)

The C in Equation (37) is any generalized Casimir operator of the form described
in the text above Equation (31).

4.3 The Binary Coupling Method

This section presents two versions of the author’s Binary Coupling Method.
Although these methods do not work in general, in practice they are most useful.
The method is based on representing each parenthesis in a coupling scheme by
operators which are sums of generalized Casimir operators over two spaces.
Any generalized Casimir operator over two spaces, say i1, i2, is equivalent to an
operator of the form:

C
(a,b,c)
i1,i2

= tr
(
[L]i1,i2 ([L]i2,i2)

a [L]i2,i1 ([L]i1,i2 [L]i2,i1)
b ([L]i1,i1)

c
)

+ adj.,(38)

where “+adj.” refers to adding the adjoint of the first term. For each degree
d and each parenthesis in the coupling scheme, the General Binary Coupling
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method adds to the mutually commuting set all operators of the above form
such that a + 2b + c = d − 2. The Special Binary Coupling method uses only
one operators per parenthesis: the one corresponding to the choice b = c = 0
and thus a = d− 2. Specifically, these operators are of the form:

Ci1,i2 = tr
(
[L]i1,i2 ([L]i2,i2)

d−2 [L]i2,i1

)
. (39)

One can easily verify that all operators of the form in Equation (38) commute
for various values of a, b, c. Much more difficult is the proof that operators of
a certain choice of a, b, c are no more degenerate than certain other choices of
a, b, c. In practice, however, operators of the form in Equation (39) are sufficient.
Thus only the special case is presented below, as the generalization is obvious
once the specific case is presented.

A given coupling scheme of r-objects can be denoted by r − 1 parentheses.
Each parenthesis is a binary operation coupling two sets of spaces. Enumerate
the parentheses, and define the sets si, s

′
i such that the ith parenthesis couples

the spaces si on the right to the spaces s′i on the left. For each parenthesis, a
generalized Casimir operator of a given degree d = a + 2 is chosen as follows:

C(i) := tr

∑
j∈si

∑
k∈s′

i

[L]j,k ([L]k,k)a [L]k,j

 . (40)

One can easily verify that all such operators form a mutually commuting set.
The general method would be to begin with one operator per parenthesis of
degree 2, and then iteratively increase the commuting set to include operators
for each parenthesis of a consecutively higher degree. However, in practice, it is
generally sufficient to choose a+2 = d = N , where the irrep (M) is of the group
U(N). The author’s computer implementation of these methods allow the user
to input which degree(s) to use, defaulting to d = N if no degree is specified.

To prove that either of these methods is sufficient to generate a complete set
of operators, several additional steps would be needed. One would need prove
that it is sufficient to use solely binary couplings, and that particular choices
of a, b, c in the General Binary Method are no more degenerate than the other
choices. Also assumed in the method is that it is sufficient to use generalized
Casimir operators that are all sums of products of the same degree. While such
proofs are yet to be shown, no counter examples have been found to date.

4.4 The Complete Coupling Method

The method of this section is only useful for SU(2), and is generally not suf-
ficient for higher U(N) irreps. Since all blocks of operators [L]i,j are 1 × 1,
all [L]i,j = Li,j . Thus all generalized Casimir operators acting on the product
space are analogous to traditional Casimir operators acting on a (not necessarily
reducible) U(r) irrep. Thus the eigenvalues are integers and can be related to
the usual m intermediate values by known formulas.

Consider an enumeration of the parenthesis, and define si to be the set of all
spaces enclosed by the ith parenthesis. The operator of degree d representing
the ith parenthesis is then chosen to be

C(i) := tr

(∑
k1∈si

∑
k2∈si

. . .
∑

kd∈si

[L]k1,k2 [L]k2,k3 . . . [L]kd,k1

)
. (41)
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This method of realizing coupling schemes is also programmed in the author’s
computer implementation.

5 Computational Considerations

5.1 Mapping the Highest Weight Vector

5.1.1 Differential Operators

To consider the computer implementation of these procedures, a few details re-
garding the action of the differential operators on the minors of determinants
is of worth. We shall choose a canonical ordering of the rows and columns such
that they are always listed in increasing order on each minor of determinant.
Let the size of a minor determinant be defined as the number of rows (equiva-
lently columns) it involves, and define the structure of a product of minors of
determinants as the number of minors of each size in the product. Thus the
minor ∆1,2,3

4,5,6 would have size three and the product ∆1
1∆

2,3
1,2∆

1,3,4
1,2,3∆

2,5,6
1,2,3 has the

structure of one minor each of size one and two and two minors of size three.
Consider then some Li,j acting on a single minor of determinant. If the

determinant does not include row j, then the result is zero, as the expression is
then constant with respect to all the partial derivatives. Suppose then that j
is one of the rows listed. Note that Li,j has the effect of changing zj,α to zi,α,
for each value of α, thus changing an index of the minor of determinant from
j to i. Permuting the list of indices to a canonical ordering may introduce a
phase of -1, as minors of determinants are antisymmetric with interchange of
any two indices. Note, if i was already included in the list of indices, the result
is also zero, as the result is a minor over duplicate rows. Thus an operator
Li,j either annihilates a minor of determinant or introduces a phase of ±1 and
replaces j with i in its list of indices. Operators Li,j act on products of minors
of determinants by the typical chain rule, resulting in a sum of products: each
term generated from the operator acting solely on one of the minors in the
product. Right operators Ri,j act identically on the column indices.

5.1.2 Spanning V (M)

It readily observed that these differential operators acting on a product of mi-
nors of determinants will yield a linear combination of products with the same
structure as the initial product. V (M) is a realization of the U(N) irrep (M),
and thus all elements of V (M) can be obtained by applying lowering operators to
the highest weight vector. In this manner we see that all elements of V (M) can
be written as linear combinations of products of minors with the same structure.
Thus the enumeration of all such possible products with the same structure as
the highest weight vector span the space V (M) . In most of the procedures, we
are solely acting on either the row or column indices. Thus in each case we will
only enumerate all the possibilities for one or the other, rather than computing
all the possible combinations of both. The recombining of the indices will be left
to the only place necessary, the final portion of the Clebsch-Gordan coefficient
procedure.

We can yet find a smaller set that still spans the space by observing consid-
ering the weight of [m]. Note that the highest weight vector in V (M) , Equation
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(22), has each row index i included Mi times, similar to the ith column of the
top row of the tableau being Mi. Each tableau corresponds to a different way
of lowering from (M) to [m]. Note though that for each unit from column j to
i changed on a tableau yields an operator Li,j , which has the effect of changing
a j to an i on the product of minors of determinants. Thus, one can easily

see that all products of minors of determinants in
−→
(πL) fmax not only has the

same structure as fmax, but has each row i included mi times. Thus one can
easily construct a spanning set of products of minors of determinants, and each
(πL)ifmax can be written as a vector of constant coefficients multiplied by the
spanning set. Denote an enumeration of this spanning set as ~∆. Note that this
set ~∆ can be constructed explicitly just from knowing (M) and [m], without
actually applying any operators.

For example, embedding (2,1,0) in (2, 1, 0)⊗(2, 1, 0) we have (M) = (3, 2, 1, 0)
and (m) = (2, 1, 2, 1). Since M1−M2 = M2−M3 = M3−M4 = 1, all products
will be a minor over one index, a minor over two indices, and a minor over
three indices. Also, each product will include two 1’s, one 2, two 3’s, and one
4. Computing the possibilities yields the following eight products of minors of
determinants:

~∆ =



∆1∆1,3∆2,3,4

∆1∆2,3∆1,3,4

∆1∆3,4∆1,2,3

∆2∆1,3∆1,3,4

∆3∆1,2∆1,3,4

∆3∆1,3∆1,2,4

∆3∆1,4∆1,2,3

∆4∆1,3∆1,2,3


. (42)

Although this is yet a small set for (2, 1, 0) ⊆ (2, 1, 0) ⊗ (2, 1, 0), one can
consider the 3, 4 and 5-fold product of (2, 1, 0) with itself, and consider the
multiplicity of the irrep (2,1,0) in this product. This spanning set ~∆ quickly
gets very large. For the 2-fold case, it has dimension 8; 3-fold, 168; 4-fold, 6,100;
and in the 5-fold case, over 250,000. Thus efficiency in generating, enumerating,
and storing ~∆, is one of the critical issues in optimizing these procedures for
larger products.

5.1.3 Mapping to P [m]

We can now consider the concrete mapping of the highest weight vector of
V (M) into the tensor product space V (m)1 ⊗ V (m)2 ⊗ . . . ⊗ V (m)r . The com-
puter easily constructs the Gel’fand-Zetlin Tableau and reads off the lowering

operators
−→
(πL) The highest weight vector in V (M) is then constructed by Equa-

tion (22). The next step is to apply
−→
(πL) to fmax. The results are stored as the

matrix M̃ defined such that (πL)ifmax = M̃i,j∆j , or more succinctly as

−→
(πL) fmax = M̃∆. (43)
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5.1.4 Borel Condition

The next step in mapping the highest weight vector is to satisfy the Borel,
or off-diagonal covariance, condition. Enumerate the off-diagonal operators as
L(1), L(2), . . . L(last). The goal is then to determine a matrix B such that

L(i)B
−→
(πL) fmax = ~0, (44)

for all the necessary L(i). The most efficient method is to compute the matrix
B iteratively.

First, consider some unknown linear combination given by vector ~c such that

~0 = L(1)

(
cT

−→
(πL) fmax

)
= L(1)

(
cT M̃ ~∆

)
= cT M̃

(
L(1)~∆

)
= cT M̃A ~∆′

⇒ (M̃A)T~c = ~0, (45)

where A and ~∆′ are defined such that L(1)∆i = Ai,j∆′
j . Also note that differen-

tial operators such as L(1) commute with the matrices and vectors of constant
coefficients, and only act on the basis of products of minors of determinants.
This final expression for ~c in the bottom line of the above equation is underde-
termined, and thus ~c can be written as a matrix multiplied by a vector of free
variables. Let the transpose of this matrix be denoted as B(1). Since Equation
(45) is true regardless of the values of the variables, it follows that B(1)M̃A = 0.
One could equivalently state that the transpose of the matrix B(1) spans the
nullspace of (M̃A)T . The efficient computation of the nullspace is another im-
portant issue in optimizing the program for larger products. We then have:

L(1)

(
B(1)

−→
(πL) fmax

)
= L(1)B(1)M̃ ~∆

= B(1)M̃
(
L(1)~∆

)
= B(1)M̃A ~∆′

= ~0. (46)

Similarly, one can consider ~c (2) such that L(2)

(
c(2)T B(1)

−→
(πL) fmax

)
= 0.

As above, this equation is underdetermined and yields a matrix of constant

coefficients B(2) satisfying L(2)

(
B(2)B(1)

−→
(πL) fmax

)
= 0. In general, one can

determine the matrix B(i) from the ith iteration by solving

L(i)

(
~c (i)T B(i−1) . . . B(1)

−→
(πL) fmax

)
= 0, (47)

for ~c (i).
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Note that at each iteration the matrix of coefficients of ~c (i+1), namely
(B(i)B(i−1) . . . B(1)M̃A(i)) has fewer rows than the previous matrix
(B(i−1)B(i−2) . . . B(1)M̃A(i)), and thus computing the nullspace is simpler at
each iteration.

Let B := B(last) . . . B(2)B(1) be the product of all the matrices. Note then
that for any L(i)

L(i)
(
BM̃ ~∆

)
= L(i)B(last) . . . B(2)B(1)(̃M)~∆

= B(last) . . . B(i+1)L(i)B(i) . . . B(2)B(1)(̃M)~∆
= B(last) . . . B(i+1)~0
= ~0. (48)

Define M := BM̃ , and thus ~Φ = M ~∆ = B
−→
(πL) fmax is a concrete basis for

fmax mapped into the product space. Note then that the dimension of ~Φ is the
multiplicity of V (M) in the product space V (m)1 ⊗V (m)2 ⊗ . . .⊗V (m)r , which is
computed explicitly by the above procedures.

5.1.5 Applying Generalized Casimir Operators

Let C be one of the operators in a complete set of mutually commuting gener-
alized Casimir operators related to some coupling scheme. We then have

C~Φ = CM ~∆
= MC~∆
= MΓ~∆
= (MΓM−1)(M ~∆)

= [C]~Φ, (49)

where Γ is defined such that C∆i = Γi,j∆j , and where [C] is defined as [C] =
MΓM−1. Since the generalized Casimir operators are all Hermitian, [C] can
be diagonalized. That is, there exists P and η, (η being the diagonal matrix
of eigenvalues) such that [C] = PηP−1. Then Equation (49) can be written as
C~Φ = PηP−1~Φ or

C
(
P−1~Φ

)
= η

(
P−1~Φ

)
, (50)

and thus C is diagonal is this basis.
If η is degenerate, then one can apply additional generalized Casimir oper-

ators. Similar to the above method, one can then compute a matrix P such all
of the operators in the mutually commuting set are diagonal with respect to the
basis P−1~Φ = P−1M ~∆. Each element of P−1~Φ can then be labeled by eigen-
values of the chosen set of operators. Since these operators are Hermitian, the
eigenvalues are real and the eigenvectors P−1~Φ are orthogonal. The elements in
P−1~Φ can then be notated as |(M), fmax, (η)〉, where (η) are the eigenvalues of
the set of generalized Casimir operators labeling the particular basis element.

Thus, the basis which diagonalizes the set of generalized Casimir operators
related to a coupling scheme is the orthogonal basis representing that coupling
scheme, and the sets of eigenvalues of the operators provide labels for the basis
elements. Specific examples are included in the Section 6.
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5.2 Racah Coefficients

Consider then two complete sets of mutually commuting generalized Casimir
operators corresponding to two coupling schemes. Note, in general, that the sets
do not commute with each other. Denote the schemes as primed and unprimed.
The Racah coefficients of Equation (27) can then be written alternately in Dirac
or inner product notation as

R
(M)
(η),(η′) = 〈(M)fmax(η) |(M)fmax(η′)〉 (51)

=

(
P−1

(η)
~Φ, P ′−1

(η′)
~Φ
)

‖P−1
(η)

~Φ‖‖P ′−1
(η′)

~Φ‖
, (52)

where P and P ′ are the matrices used for diagonalizing the generalized Casimir
operators in the prime and unprimed coupling schemes, and the subscripts (η)
and (η′) indicate using just the column corresponding to the eigenvector labeled
by that eigenvalue.

The numerator and denominator are computed separately. All inner prod-

ucts are computed by taking the adjoint of
−→
(πL). For example, consider the

numerator in index notation. The overlap between the ith and jth elements is(
(P−1~Φ)i, (P ′−1~Φ)

)
=

(
(P−1B)i,k(πL)kfmax, (P ′−1M)j,l∆l

)
= (P−1B)i,k(P ′−1M)j,l

(
fmax, (πL)†k∆l

)
= (P−1B)i,k(P ′−1M)j,lQk,l‖fmax‖2

= (P−1BQT MT P ′−T )i,j‖fmax‖2, (53)

where −T denotes inverse transpose, and Q is defined such that Qk,lfmax =
(πL)†k∆l. Equation (51) can now be written as

R
(M)
(η),(η′) =

P−1
(η) BQMT P ′−T

(η′)√
P−1

(η) BQMT P−T
(η)

√
P ′−1

(η′)BQMT P ′−T
(η′)

. (54)

Notice that the norms of fmax have all cancelled, and thus the method is truly
basis independent, as it should be. The author’s computer procedures computes
the matrix Q and then uses Equation (54) to compute the coefficients. Note
this is an equation for matrix elements, while the computer procedures return
the entire matrix. Also note in the equation, the matrices B,M, and Q depend
only on the irrep and the product space, while the matrices P and P ′ depend
only on the coupling scheme.

5.3 Gel’fand-Zetlin Basis

Computing the Gel’fand-Zetlin basis utilizes the same routines as mapping the
highest weight vector into the product space. Given a tableau corresponding to
an element in V (M) , the procedure constructs all tableau with the same weight,

yielding some
−→
(πR), in analogy with Section (3.1). There is no Borel condition,

and so the basis for the multiplicity is given by
−→
(πR) fmax. Again, we can
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enumerate the possible combinations of column indices, and write ~Φ(c) :=
−→
(πR)

fmax = M (c)~∆(c). This is in analogy to Equation (23), except we have decorated
each symbol with superscript (c) to distinguish between these and the analogous
objects in Section (3.1).

The next step is to apply Casimir operators to determine the correct com-
bination of the ~Φ(c) that corresponds to the given tableau. The procedure
intelligently chooses which Casimir Operators are necessary to break the de-
generacy, based on the relationship between the eigenvalues and the entries of
the tableaux. The operators are applied iteratively, and at each iteration, the
procedure restricts itself to the subspace with the appropriate eigenvalue. The
result then is some particular combination, say ~h′, of the basis elements

~h′M ′(c)~∆(c) = ~h(M)~∆(c), (55)

where ~h(M) is defined as
−→
h

(M)

= ~h′M ′(c).
The basis elements for the V (m)i spaces are computed equivalently, with

care to ensure that each covers the appropriate range of variables. The results
can then be written as ~h(M)~∆(c) for the element of V (M) and ~h(i)~∆(c,i) for each
V (m)i .

5.4 Clebsch-Gordan Coefficients

Let h denote a specific tableau, corresponding to an element in the irrep M .
The concrete realization of

∣∣(M), h, (η(A))
〉

is then given by the combination
of P−1M ~∆(r) and ~h(M)~∆(c), where the former is from mapping V (M) into the
product space, and the latter from lowering the highest weight element to the
element corresponding to h. Here the two ~∆ are decorated with (c) and (r)
to denote whether it corresponds to possible row or the column indices. The
combination can then be written as∣∣∣(M), h, (η(A))

〉
→ h(Z) = P−1M∆(r,c)~h(M), (56)

where ∆(r,c) is a matrix defined by ∆(r,c)
i,j being a weighted sum of the various

combinations of ∆(r)
i and ∆(c)

j . The weights are the ratios between the number of

ways to combine ∆(r)
i and ∆(c)

j to get that particular minor of determinants and
the total number of combinations. Some examples are in order. For simplicity,
consider just minors over two indices. The following combine as

∆1,2 & ∆1,2 → ∆1,2
1,2

∆1,2∆3,4 & ∆1,2∆3,4 → 1
2
∆1,2

1,2∆
3,4
3,4 +

1
2
∆1,2

3,4∆
3,4
1,2

∆1,2
(
∆3,4

)2
& ∆1,2 (∆3,4)

2 → 1
3
∆1,2

1,2

(
∆3,4

3,4

)2

+
2
3
∆1,2

3,4∆
3,4
1,2∆

3,4
3,4 (57)

The weighting in the sums occur because each side was computed independently,
and thus some factors have been accounted for multiple times.

To see the source of these weights for an explicit example, consider the

two operators L3,2 and R4,2 acting on the minor
(
∆1,2

1,2

)2

. Since the operators
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commute, we can apply then in either order. The correct answer is

R4,2L3,2

(
∆1,2

1,2

)2

= R4,2

(
2∆1,2

1,2∆
1,3
1,2

)
= 2

(
∆1,2

1,4∆
1,3
1,2 + ∆1,2

1,2∆
1,3
1,4

)
= 2∆1,2

1,4∆
1,3
1,2 + 2∆1,2

1,2∆
1,3
1,4. (58)

The computer would compute the two sides as:

L3,2

(
∆1,2

)2
= 2∆1,2∆1,3,

R4,2 (∆1,2)
2 = 2∆1,2∆1,3. (59)

Just summing the combinations (without the factors of 1
2 ) would yield 4∆1,2

1,4∆
1,3
1,2

+ 4∆1,2
1,2∆

1,3
1,4, which would be wrong. However, with the weighted sum, the

combinations become

M∆(r,c)~h(M) = [2]
[
1
2
∆1,2

1,4∆
1,3
1,2 +

1
2
∆1,2

1,2∆
1,3
1,4

]
[2]

= 2∆1,2
1,4∆

1,3
1,2 + 2∆1,2

1,2∆
1,3
1,4. (60)

Thus the factors account for any double counting contained in the coefficients.
Let hi be a tableau corresponding to an element in (m)i. The corresponding

polynomial in V (m)i can be written simply as ~h(i) · ~∆(c,i), where (i) denotes
which V (m)i space, and the (c) denotes reference to column indices. The values
of ~h(i) and ~∆(c,i) for the space V (m)i are computed similarly to the values ~h(M)

and ~∆(c) for the space V (M) . In this case, the rows remain the highest weight,
and so the combinations discussed above for the V (M) space is avoided. Thus
in this concrete representation, the Clebsch-Gordan coefficient of Equation (30)
becomes, in inner product notation,(

P−1M∆(r,c)~h(M),
∏r

i=1
~h(i) · ~∆(c,i)

)
‖P−1M∆(r,c)~h(M)‖‖

∏r
i=1

~h(i) · ~∆(c,i)‖
, (61)

with the norm defined as ‖f‖2 = (f, f).
This is as far as the spanning sets ∆(r,c) and ~∆(c,i) are useful. At this point

one must finally break the minors of determinants into components to carry
out the inner product. Even with advances in symbolic manipulation programs,
directly carrying out Equation (61) can be incredibly complicated and computer
intensive.

To overcome this difficulty, one now switches to another spanning set to
isolate the complications. Note that each product of minors of determinants
are linear combinations of products of the elements, in this case complex vari-
ables zi,j . Thus one can enumerate all possible products of the zi,j as a new

basis, denoted
−→
(πZ), and each element of ∆(r,c) and ~∆(c,i) can be written as a

vector of coefficients dotted with
−→
(πZ). Computationally, it most practical to

carry out the sums over elements of ~h(M) and ~h(M) in Equation (61) simulta-
neous with switching spanning sets. Thus we can define a matrix A such that
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∆(r,c)
i,j h

(M)
j = Ai,k(πZ)k, and a vector ~a such that ~a·

−→
(πZ)=

∏r
i=1

~h(i) · ~∆(c,i).
Thus the numerator of Equation (61) becomes(

P−1MA
−→
(πZ),~a·

−→
(πZ)

)
. (62)

In index notation this becomes simply (P−1MA)i,jak ((πZ)j , (πZ)k). Define
the matrix D such that Di,j = ((πZ)j , (πZ)k). Using the inner product defined
in Equation (11), one readily observes that D is a diagonal matrix, with the
diagonal elements being simply the product of the factorials of the exponents
of the zi,j . The final computation becomes(

P−1MADa
)
i√

(P−1MADAT MT P−T )i,i

√
aT Da

, (63)

where i corresponds an enumeration of the labels (η) corresponding to a chosen
coupling scheme. Thus the only portion of the computation that is very intensive
computationally is converting between the spanning set in terms of products
of minors of determinants and the spanning set in terms of products of the

variables. The complexity is comparable to computing
−→
(πL) ~∆(r) in the Racah

coefficient calculation. Once the Clebsch-Gordan procedure has switched to

the new basis
−→
(πZ), it can easily read off the norms of

−→
(πZ) and simple matrix

multiplication yields the final result.

6 Examples

6.1 SU(2) 4-fold

The first example is chosen to be simple enough to explicitly show all the steps of
the procedure, and yet complicated enough to show the power of the procedure.
Consider combining four spin- 1

2 objects. The total spin can then be any integer
value between 2 and 0. Consider the multiplicity of the spin 1 irrep in the direct
sum basis. In the language of these procedures, spin- 1

2 objects correspond to
the SU(2) irrep (1,0), and the spin 1 objects correspond to the (2,0) irrep.
The tensor product space is then V (1,0) ⊗ V (1,0) ⊗ V (1,0) ⊗ V (1,0). We choose
(M) = (3, 1, 0, 0) since (3, 1) is equivalent to (2, 0) and sums to the correct value.
The highest weight vector is then

fmax =
(
∆1

1

)2
∆1,2

1,2 (64)

There are three tableau:
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3 1 0 0

2 1 0

2 0

1

 ,


3 1 0 0

2 1 0

1 1

1

 ,


3 1 0 0

3 0 0

2 0

1

 . (65)

The operators from the tableau are:

−→
(πL) =


L4,2L3,1L2,1

L4,1L3,2L2,1

L4,1L3,1

 . (66)

Applying these operators to fmax and writing the result as ~Φ =
−→
(πL) fmax =

M ~∆ yields

M ~∆ =


2 0 0 2 0 2

−2 0 2 0 2 0

0 2 0 0 −2 −2





∆1∆2∆3,4

∆3∆4∆1,2

∆2∆4∆1,3

∆2∆3∆1,4

∆1∆4∆2,3

∆1∆3∆2,4


. (67)

For SU(2), there are no off-diagonal elements and thus no Borel condition to
solve. The above equation can also be written out explicitly as

Φ1 = 2∆1∆2∆3,4 + 2 ∆2∆3∆1,4 + 2 ∆1∆3∆2,4

Φ2 = −2 ∆1∆2∆3,4 + 2 ∆2∆1,3∆4 + 2 ∆1∆2,3∆4

Φ3 = 2∆1,2∆3∆4 − 2 ∆1∆2,3∆4 − 2 ∆1∆3∆2,4. (68)

For SU(2), the Complete Coupling method works well and has integer eigen-
values. We first apply the operator coupling the set of spaces {1, 2} and then
the operator coupling the set of spaces {1, 2, 3}, corresponding to the coupling
scheme (((1, 2), 3), 4). This yields the following pairs of eigenvalues and P ma-
trix: 

(2, 9)

(6, 15)

(6, 9)

 ,


0 −3 0

0 1 1

1 1 −1/2

 . (69)

Note that in this case it is not necessary to apply an operator coupling all of
the spaces, {1, 2, 3, 4}.
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Alternately, we chose the coupling scheme of ((1, 2), (3, 4)), and apply oper-
ators coupling the spaces {1, 2} and {3, 4}. This yields the following eigenvalues
and P matrix: 

(2, 6)

(6, 6)

(6, 2)

 ,


0 1 −1

0 1 1

1 −1 0

 . (70)

The Racah coefficients between the two coupling schemes are then computed to
be: 

1 0 0

0 −1/3
√

3 1/3
√

6

0 1/3
√

6 1/3
√

3

 . (71)

In this case, the Gel’fand-Zetlin basis is nearly trivial, since the only ele-
ments of each spin- 1

2 space are the highest and lowest weight vectors, which
can be written directly without any of the above formalism. Thus examples of
computing Clebsch-Gordan coefficients are deferred to more in-depth examples.

6.2 SU(3) 3-fold

Consider next the 3-fold tensor product of the eight dimensional representation
of (2, 1, 0), and consider the multiplicity of the same irrep in the tensor product.
In this case, (m)1 = (m)2 = (m)3 = (2, 1, 0) and the top row of the tableau is
(4, 3, 2, 0, 0, 0), since (4, 3, 2) is equivalent to (2, 1, 0) and has the proper weight.
In this case, the highest weight vector of V (M) = V (4,3,2) is

fmax = ∆1
1∆

1,2
1,2

(
∆1,2,3

1,2,3

)2

. (72)

There are 28 tableau that yield 28 products of differential operators. The

spanning set ~∆ has dimension 168, and thus writing
−→
(πL) fmax = M̃ ~∆ implies

the matrix M̃ has dimensions 28 × 168. The operators for the Borel condition
are L1,2, L3,4, and L5,6. There are eight linearly independent combinations such
that

L1,2B
−→
(πL) fmax = 0,

L1,2B
−→
(πL) fmax = 0,

L1,2B
−→
(πL) fmax = 0, (73)

and thus the matrix B has dimension 8×28. We finally write ~Φ = BM̃ ~∆ = M ~∆,
and the matrix M now has dimension 8× 168.

We choose our first coupling scheme to be ((1,2),3) and choose to represent
it using operators related to the Binary Coupling method of degree 3. The two
generalized Casimir operators are then [L]1,2[L]2,2[L]2,1 and [L]1,3[L]3,3[L]3,1 +
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[L]2,3[L]3,3[L]3,2. The eigenvalues are

6 66

36 42

30 36
39
2 + 3

2

√
5 105

2 − 3
2

√
5

39
2 + 3

2

√
5 105

2 + 3
2

√
5

39
2 − 3

2

√
5 105

2 + 3
2

√
5

39
2 − 3

2

√
5 105

2 − 3
2

√
5

42 30



. (74)

We next choose the alternate coupling scheme of (1,(2,3)). The operators
in this case are [L]2,3[L]3,3[L]3,2 and [L]2,1[L]1,1[L]1,2 + [L]3,1[L]1,1[L]1,3. The
eigenvalues are 

36 42
39
2 + 3

2

√
5 105

2 − 3
2

√
5

39
2 + 3

2

√
5 105

2 + 3
2

√
5

39
2 − 3

2

√
5 105

2 + 3
2

√
5

39
2 − 3

2

√
5 105

2 − 3
2

√
5

30 36

42 30

6 66



. (75)

The Racah coefficients between these two coupling schemes are computed to
be

√
10
8

√
2

4 0
√

2
4 0 −

√
10

8
3
√

3
8

1
8

1
4

−
√

5
10

1
2 +

√
5

10

√
5

10
1
2 −

√
5

10
−1
4

−
√

30
40

√
10
8

1
4

−
√

5
10

−1
2 +

√
5

10

√
5

10
−1
2 −

√
5

10
−1
4

−
√

30
40

√
10
8

−1
2 +

√
5

10
1
5

−1
5

−1
5

1
5 − 1

2 −
√

5
10

−
√

6
5 0

−
√

5
10

4
5

1
5

1
5

−1
5

√
5

10
−
√

6
20

√
2

4

1
2 +

√
5

10
1
5

−1
5

−1
5

1
5

1
2 −

√
5

10
−
√

6
5 0

−
√

5
10

−1
5

1
5

−4
5

−1
5

√
5

10
−
√

6
20

√
2

4

−
√

30
40

−
√

6
20

−
√

6
5

√
6

20

√
6

5

√
30

40
7
40

3
√

3
8



,

where the i, jth element corresponds to the overlap between elements labeled
by the ith label in Equation (74) and the jth label in Equation (75).

To compute a Clebsch-Gordan coefficient, we need to first compute basis
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elements. First, consider the element of V (4,3,2) labeled by

h(M) =


4 3 2

4 2

3

 , (76)

equivalent to the tableau of (2,1,0)
2 1 0

2 0

1

 . (77)

The weight of the tableau h(M) is (3, 3, 3). There is only one other tableau with
this weight, namely 

4 3 2

3 3

3

 . (78)

Thus
−→
(πR) has two elements, each corresponding to operators from tableau of

the same weight as the given tableau, one of these being the given tableau itself.

We can then apply
−→
(πR) to fmax and write the results as

−→
(πR) fmax = M̃ (c)~∆(c).

In this case,

−→
(πR) fmax =

[
L3,2L2,1

L3,1

](
∆1∆1,2 (∆1,2,3)

2
)

=

=

[
0 1 1

1 0 −1

]
∆3∆1,2 (∆1,2,3)

2

∆2∆1,3 (∆1,2,3)
2

∆1∆2,3 (∆1,2,3)
2

 . (79)

The only difference between the two tableau of the same weight is the middle
row, which contains two elements. Thus the quadratic Casimir over the first
two variables is sufficient to break the degeneracy. The operator is

R1,1R1,1 + R1,2R2,1 + R2,1R1,2 + R2,2R2,2 (80)

and the eigenvalues and matrix P ′ are:[
22

18

]
,

[
−2 0

1 1

]
(81)

A known formula [10] associates the eigenvalue of 22 with the row [4, 2], and
associates the first eigenvector with the tableau h(M). Combining the proper
eigenvector of P ′−1 with M̃ (c) allows us to write the result as:

~h(M) · ~∆(c) =
[

0 −1/2 −1/2
] 

∆3∆1,2 (∆1,2,3)
2

∆2∆1,3 (∆1,2,3)
2

∆1∆2,3 (∆1,2,3)
2

 . (82)
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The basis elements in the tensor product basis are computed similarly.
The next step is to combine ~∆(r) with ~∆(c) in the direct sum basis, and

similarly in the tensor product basis. Both sides are then written in terms of

the new spanning set
−→
(πZ), which in this case has dimension 417. Let us choose

the following basis elements:

h(1) =


2 1 0

2 1

2

 , h(2) =


2 1 0

1 1

1

 ,

h(3) =


2 1 0

1 0

0

 , (83)

We shall then compute the Clebsch-Gordan coefficient in direct sum basis
corresponding to the coupling scheme ((1, 2), 3), with the above choice of basis
elements h(M), h(1), h(2), h(3). (Equations (30), (30), (61), and (63)). The values
are:

1
77760



0

0

−2

−1−
√

5

4− 2
√

5

−1 +
√

5

4 + 2
√

5

−1



(84)

where the ith coefficient above corresponds element labeled by the ith set of
eigenvalues in Equation (74). On an average desktop computer, the compu-
tation time of the above example is around two to three minutes total for all
calculations.

7 Conclusion

Given any irrep (M) of U(N) and any tensor product of irreps (m)1 ⊗ (m)2 ⊗
. . . ⊗ (m)r of U(N), we have demonstrated procedures how to map elements
from the representation space V (M) to the tensor product representations space
V (m)1 ⊗ V (m)2 ⊗ . . .⊗ V (m)r . The number of linearly independent maps yields
the multiplicity. Furthermore, we have introduced generalized Casimir opera-
tors. Mutually commuting sets of generalized Casimir operators yield orthogo-
nal bases among the multiplicity, and eigenvalues of these operators yield labels
for the multiplicity. The relation between coupling schemes and generalized
Casimir operators has been discussed. In particular, the author has presented
his “Binary Coupling Method” of choosing generalized Casimir operators re-
lated to coupling schemes. Methods of computing Racah coefficients between
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different mutually commuting sets of generalized Casimir operators have been
presented, and although the computations began by using the highest weight
element of V (M) , the result is shown to be independent of this choice.

Procedures have also been provided to compute a representation of the
Gel’fand-Zetlin basis for any U(N) irrep. This follows very similarly to the
procedure to map elements of V (M) into the tensor product space. Having a
concrete realization of the Gel’fand-Zetlin basis, and having the multiplicity
labeled by a set of commuting generalized Casimir operators, Clebsch-Gordan
coefficients can then be easily computed by using the differential inner product.
Thus both the multiplicity labeling problems and the general U(N) basis prob-
lems have been solved, and both Racah and Clebsch-Gordan coefficients can be
computed for any r-fold tensor product of U(N). The author has programmed
all of these procedures into Maple, and has optimized the program so that 3-fold
SU(3) examples can be computed within a few minutes, and 4-fold SU(3) ex-
amples in a matter of hours. The author has also written online documentation
explaining how to use the procedures, including several example worksheets.
The program and documentation is available through a link at

http://www.physics.uiowa.edu/~wklink.
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