
Optimization of the TabProcs Package

Stephen V. Gliske

May 23, 2006

Abstract

The TabProcs package is a Maple package written by the author, fol-
lowing the procedures developed with his collaborators, Dr. W.H. Klink
and Dr. T. Ton-That. This paper describes how the abstract quanti-
ties of the procedure are represented and manipulated in the computer
implementation, including some of the optimization techniques.

1 Datatype Representations

1.1 Operators

Let the signatures (M) and (m)1, (m)2, . . . (m)r of U(N) be given. As defined
previously, elements of the vector space V (m)1 ⊗ V (m)2 ⊗ . . . ⊗ V (m)rare poly-
nomials over a matrix of variables denoted Z. If each signature (m)i has pi

non-zero entries and n :=
∑r

i=1 pi, then Z is an n by N matrix. All left difer-
ential operators Li,jwill satisfy 1 ≤ i, j ≤ n while all right operators Ri,jwill
satisfy 1 ≤ i, j ≤ N .

Let ñ = max(N,n). One can enumerate the possible indices according to

(i, j) → (i− 1)ñ + j. (1)

This is equivelant to enumerating the elements of a ñ× ñ matrix in row-major
order, and the enumeration ranges from 1 to ñ2.

For example, consider ñ = 3. Then any operator Li,jor Ri,j is enumeratred
as the i, jth element of the following matrix: 1 2 3

4 5 6
7 8 9

 . (2)

In this manner, only the enumeration index is needed to store the operator.
Products of operators are listed in backwards order from the usual conven-

tion. Whereas when one writes a product of operators, the convention is to act
first with the operator farthest to the right, the procedures list the operators
such that the first operator in the list (the farthest operator to the left) is ap-
plied first. Thus, considering the above same example, the product of operators
L1,2L2,2L2,1 is representated as [4, 5, 2].

1

1.2 Minors of Determinants

Once (M) and each (m)i are specified, one immediately knows the structure of
all the products of minors of determinants used in a particular example. The
procedures explictly determine the set of what sizes of minors will be needed.
And since the dimensions of the matrix Z are given, all sets of indices used
must include only the integers 1 . . . ñ. The procedures explictly construct (as
bit arrays–discussed later) and enumerate all possible minors of determinants,
of the sizes needed and of the indices in the correct range. Each minor is then
represented by its index in the enumeration.

For example, consider the 8-dimensional irrep of SU(3) sitting the in the
three fold product of the 3-dimensional irrep. Then (M) = (2, 1, 0) and (m)1 =
(m)2 = (m)3 = (1, 0, 0). In this case Z is a 3× 3 matrix. The only minors used
in this example will be of size 1 or 2, and the indices will range from 1 to 3.
Thus an enumeration is

Minors =

1
2
3

1, 2
1, 3
2, 3

 . (3)

The actual order of the enumeration used is discussed later. Note that these
could refer to either row or column indices, i.e. Minors4 equivelantly represents
∆1,2 and ∆1,2. Which indices are represented is kept tract of by other means.

A product of minors can then be specified by a list of indices in the enumera-
tion. Since multiplication is commutative, we choose the list to be in increasing
order. However, it is much more convinient to represent a product as a single
number rather than a list of numbers. Let Λ be the total number of minors
in the enumeration. We can then think of the list as being a number, base Λ,
which for storage purposes we choose to represent base 10. Thus if l = [l1, l2 . . .]
is a list of minors in a product, (l1 ≥ l2 ≥ . . .), the product is represented as∑

i(li − 1)Λi−1 Continuing the above example, Λ = 6 and the highest weight
vector of (2, 1, 0) is represented

∆1∆1,2 → [1, 4] → (1− 1)61 + (4− 1)60 = 3. (4)

In this manner, the spanning sets ∆r, ∆c,i, are represented as vectors of
integers, taking values in the set {0 . . .Λα−1}, where α is the number of products
of minors respective to each set ∆r, ∆c,i.

2 Optimization

2.1 Action of Operators

Although the above discussed representations are designed for efficient storage
and sorting, they are not the best representations for the application of op-

2

erators to minors of determinants. Let L(i) represent the ith operator in the
enumeration. Note that there exists k such that the action of L(i) on Minorsj

yeilds
L(i)Minorsj = ±Minorsk. (5)

Thus to speed the application algorithm, a ñ2 × Λ array is generated. Denote
this array (AT), for application table. Define the elements such that

L(i)Minorsj = sign ((AT)i,j)Minors|(AT)i,j |. (6)

The action of differential operators on the polynomials (expressed as minors
of determinants) is then represented by the action of the operators, enumerated
1 . . . ñ2, acting on the space representing the minors, enumerated 1..Λ. The
action is already computed in the table, and thus one the table is complete,
all computations can be done by considering just the ordinal positions and the
action given by the table, without any further consideration to the actual objects
they represent.

To compute the table, however, a different representation is needed. For
this, a binary representation is quite efficient. The indices of any one minor can
be expressed as a ñ-bit array, with the ith bit set to 1 if the minor includes
the row (column) index i. This is equivalent to representing the minor as the
integer

∑
i 2(i−1) where the sum is over each i included in the minor.

Let x be the bit array representation of a minor, and consider the acton of
Li,jon the minor. On must first check that the jth bit is 1 and that the ith
bit is 0, otherwise the operator anhiliates the minor. In the process, one can
easily construct the sum of the bits between ith and jth bit. If the sum is an
odd number, then the operator introduces a phase of −1. The jth bit is then
changed to the ith bit by adding a factor of 2i−1 − 2j−1.

To further save redundant computations, one can construct an antisym-
metric table such that the i, jth component equals 2i−1 − 2j−1. Then after
considering whether Li,janhiliates the minor or indroduces a phase, the minor
(bit array) x is changed to the minor whose bit array equals x plus the i, jth
component of the antisymmetric table.

Once the table is complete, then the bit array representation is no longer
useful, except that the actual order of the minors of determinants in their enu-
meration is by ascending order of their binary representations.

2.2 Spanning Set of Minors

Linear combinations of products of minors of determinants are aways written
as a vector of coefficients multiplied by some spanning set of products of minors
of determinants. Thus, whenever operators need to be applied to a linear com-
bination of minors of determinants, the action of the operator on the spanning
set of products is computed, yielding a transformation matrix times a (possibly
new) spanning set. Examples of this are already provided in the other papers
on the subject.

3

Although the spanning sets can be explicitly generated based on the weight
structure of the space, in practise is more efficient just to generate the set as
it is created. This method, thought, has the disadvantage that the bases set
is not generated in any order that can be used to make searching the set more
efficient. Sorting the basis at this point would involve re-arranging the matrix of
coefficients. Instead, a reverse-lookup table is generated. For example, denote
the reverse lookup table of ~∆(r) as ~∆(r,rev). Then if ∆(r)

i = c, ∆(r,rev)
c = i.

The reverse lookup table is stored sparsely, such that only the non-zero
elements are explictly stored. In this case, the memory cost is doubled. However,
there is no need to explictly construct ∆(r) or to ever sort any of these spanning
sets. Also no search routine is needed, as the reverse lookup table gives the
place of each product of minors in just the amount of time it takes to lookup
the sparse table value.

2.3 The Borel Condition

For larger examples, the most time comsuming portion of mapping fmax into the
product space is solving the nullspace problem in the Borel Condition. Simply
put, one has a matrix N = MA and one needs to determine a matrix B such
that BN = 0. Furthermore, N often appears to be overdetermined. That is,
the column dimension is larger than the row dimension. However, in all cases
of interest the number of linearly independant columns (column rank) is less
than to the row dimension–otherwise, there exist only the trivial solution and
the multiplicity is zero.

Note, the problem can be reduced finding the basis for the set of vectors
~c such that NT~c = ~0. The usual method would be to compute the LU-
decomposition of the matrix NT , and the author’s methods are based on this
algorithm. However, the methods compute the decomposition without explic-
itly transposing the matrix N , and take into consideration the column rank
being (assumed) less than the column dimension. The methods are modified to
be fraction-free, such that everything is computed in exact integer arithmatic,
rather than using Maple’s costly fraction datatype or inexact floating point
arithmatic. A modified partial pivot is also used.

Consider first the case where pivoting is not needed. N is decomposed as
N = L′R, where R is a square, invertible, upper-triangular matrix, and L′ has
the form

L′ =
[

L 0
N ′ 0

]
, (7)

where L is a square, invertible, lower-triangular matrix; N ′ is a matrix; and the
zeros represent zero matrices of the appropriate size. The matrix defined by
B =

[
N ′L−1, −I

]
is then a solution since

BN = BL′R

=
[

N ′L−1, −I
] [

L 0
N ′ 0

]
R

4

=
[

N ′L−1L−N ′, 0
]
R

=
[

0, 0
]
R

= 0. (8)

The matrix R is not needed in the solution, and thus never actually constructed.
BLAH about the pivot and fraction free

2.4 Change of Spanning Sets

In the procedures for computing Clebsch-Gordan coefficents, the spanning sets of
products of minors of determinants eventually reach the end of their usefulness.
At this point, one has mapped the highest weight vector of V (M) both into the
products space, and broken the degeneracy with a complete set of generalized
Casimir operators, yeilding

P−1B
−→
(πL) fmax = P−1M ~∆(r) (9)

The highest weight vector has also been lowered to the basis element specified
by a given Gel’fand-Zetlin tableau, yeilding

~h′·
−→
(πR) fmax) = ~h · ~∆(c) (10)

The next step is to combine ~∆(r) with ~h · ~∆(c), and rewrite the result as some

new matrix Ai,j multiplied with a new spanning set
−→
(πZ). Each element of

−→
(πZ)

is a product of the complex variables zi,j . The matrix Ai,j is defined such that
∆(r)

i combined with all of ~h · ~∆(c) equals
∑

j Ai,j(πZ)j .

For each ∆(r)
i and ∆(c)k, the procedure seperatly considers minors of each

particular size, computes the weighted combination, and generates a vector of
coefficients and a vector of products of variables. The procedures then combine
the results from each size minors considered, and multipy by hk. Adding the
results for each value of k yeilds the ith row of the matrix A.

To optimize this procedure, the variables zi,j are represented as the number
(w +1)(i−1)N+j where w is equal to the sum of the entries of (M), and (M) is a
U(N) irrep. In this case, multiplication is replaced by addition. Thus a generic
product of elements is represetned as

w∏
k=1

zik,jk
→

w∑
k=1

(w + 1)(ik−1)N+jk . (11)

This is equivelant to enumerating the variables in row-major order, and if some
zi,j happens to be the kth variable in this ordering, then a factor of (w + 1)k

is added in for each occurance of zi,j in the product. Alternately, if x is a
representation of a product of variables of the above form, the kth digit of x in
base (w + 1) is the exponent of the kth variable. The exponents are known to
be no larger than w by the weight conditions on the V (M) space, and are also

5

non-negative. Thus one needs (w + 1) digits for each of the posible exponants,
and thus the exponants of the variables can best be represented in base (w +1).

For each particular size of minor of determinant, the procedure can determine
what the determinant looks like in this representation, as a formula of the row
indices, and then for each determinant of this size just input the list of rows and
columsn into the formula to determine the minor. For example,

∆i
j = zi,j → (w + 1)(i−1)N+j = [1]

[
(w + 1)(i−1)N+j

]
∆i,j

k,l = zi,kzj,l − zi,lzj,k →
[

1, −1
] [

(w + 1)(i−1)N+k(w + 1)(j−1)N+l

(w + 1)(i−1)N+l(w + 1)(j−1)N+k

]
(12)

3 Examples

3.1 Canonical Example

For example, consider (3, 2, 1) ⊆ (2, 1, 0) ⊗ (2, 1, 0). Minors will have sizes 1,
2, and 3. In this case ñ = 4, and the following shows that Λ = 14. Thus the
enumeration of minors are have the following binary and ordinal represention:

Minor BitArray Binary Ordinal
∆1 0001 1 1
∆2 0010 2 2

∆1,2 0011 3 3
∆3 0100 4 4

∆1,3 0101 5 5
∆2,3 0110 6 6

∆1,2,3 0111 7 7
∆4 1000 8 8

∆1,4 1001 9 9
∆2,4 1010 10 10

∆1,2,4 1011 11 11
∆3,4 1100 12 12

∆1,3,4 1101 13 13
∆2,3,4 1110 14 14.

(13)

In this case, it happens that the binary matches the ordinal representation. The
highest weight vector is

∆1∆1,2∆1,2,3 → [1, 3, 7]
→ (1− 1)142 + (3− 1)14 + (7− 1) = 34. (14)

6

The spanning set is represented as

∆1∆1,3∆2,3,4

∆1∆2,3∆1,3,4

∆1∆3,4∆1,2,3

∆2∆1,3∆1,3,4

∆3∆1,2∆1,3,4

∆3∆1,3∆1,2,4

∆3∆1,4∆1,2,3

∆4∆1,3∆1,2,3

→

[1, 5, 14]
[1, 6, 13]
[1, 12, 7]
[2, 5, 13]
[4, 3, 13]
[4, 5, 11]
[4, 9, 7]
[8, 5, 7]

→

69
82
95
264
446
654
680
875

(15)

7

