58. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 23-4 and Eq. 23-7), so we focus on the x dependent term only. In Si units, we have

$$E_{\text{non-constant}} = 3x \hat{i}.$$

The face of the cube located at $x = 0$ (in the yz plane) has area $A = 4 \text{ m}^2$ (and it “faces” the $+\hat{i}$ direction) and has a “contribution” to the flux equal to $E_{\text{non-constant}} A = (3)(0)(4) = 0$. The face of the cube located at $x = -2 \text{ m}$ has the same area A (and this one “faces” the $-\hat{i}$ direction) and a contribution to the flux: $-E_{\text{non-constant}} A = -(3)(-2)(4) = 24$ (in SI units). Thus, the net flux is $\Phi = 0 + 24 = 24 \text{ N} \cdot \text{m/C}^2$. According to Gauss’ law, we therefore have $q_{\text{enc}} = \varepsilon_0 \Phi = 2.13 \times 10^{-10} \text{ C}$.