78. (a) The voltage across C_1 is 12 V, so the charge is
\[q_1 = C_1 V_1 = 24 \mu C. \]

(b) We reduce the circuit, starting with C_4 and C_3 (in parallel) which are equivalent to 4 μF. This is then in series with C_2, resulting in an equivalence equal to $\frac{4}{3} \mu$F which would have 12 V across it. The charge on this $\frac{4}{3} \mu$F capacitor (and therefore on C_2) is $(\frac{4}{3} \mu F)(12 \text{ V}) = 16 \mu C$. Consequently, the voltage across C_2 is
\[V_2 = \frac{q_2}{C_2} = \frac{16 \mu C}{2 \mu F} = 8 \text{ V}. \]

This leaves $12 - 8 = 4$ V across C_4 (similarly for C_3).