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We employ a relativistic formalism which based on an exact realization of the symmetry of the
Poincaré group [1]. There are some identifications of relativistic potential corresponding to the
original nonrelativistic potential [2]. Using the Coester-Pieper-Serduke [3] method one solves a
nonlinear equation [4] to obtain the relativistic potential.
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where v(�p, �p ′) and vr(�p, �p ′) are nonrelativistic and relativistic potential, respectively. This
equation of vr is directly solved by the iteration method [4] in the partial wave.
As well as solving t-matrix without partial wave decomposition [5] one can solve Eq.(1) intro-
ducing angle between �p and �p ′ (x′ = cos θ = p̂ · p̂′) to get the relativistic potential vr.

4mv(p, p ′, x′) = vr(p, p ′, x′)
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where x′ = p̂ · p̂′, x′′ = p̂′′ · p̂′, and y = p̂′′ · p̂ = xx′′ +
√

1 − x2
√

1 − x′′2 cosϕ′′.
Similarily we can solve the boosted potential vr

q as
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where q is the total mometum of the pair.
Now, we have a question how large the nonlocality of the boosted potential is. We introduce
the function N(�ρ) of the nonlocality in the NN interaction [6]

N(�ρ; v) ≡ 1
(2π)3

∫
d �Kei �K�ρ v(K, K, 1)

v(0, 0,1)
(4)
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where �K ≡ (�p + �p ′)/2, �ρ = �r ′ − �r, and �r and �r ′ are the relative coordinate of initial and final
states, respectively.
In the case of local potential, the nonlocality is trivially given as [6]

N(�ρ; local potential) = δ3(�ρ) (5)

As a measure for the width one can use

〈ρ2〉1/2 ≡
(∫

d�ρρ2N(ρ; v)
)1/2

(6)

In Fig 1. the width 〈ρ2〉1/2 is demonstrated to the boost momentum q. The nonlocality will
weaken by increasing boost momentum q.
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Figure 1: Width of the nonlocality. Malfliet-Tjon version V potential [7] is chosen as the original local
nonrelativistic one.
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