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Outline

• Background and motivation.

• Fractals self-similarity and the renormalization group.

• Numerical analysis using the renormalization group.

• Applications.



Standard numerical methods

• Designed to work with functions that with enough
magnification locally look like straight lines.

• Global basis functions {φn(x)} are often associated with
a scale. They may have to be rescaled {

√
aφn(ax)} to

efficiently represent structures on a given scale.

f (x) =
∑
n

fnφn(x) fn =

∫
f (x)φ∗n(x)dx

• Global basis functions (orthoginal polynomials, Laguerre
functions, Hermite functions) can have difficulties
dealing with local structures, or structures on multiple
scales.



Motivation for considering wavelets

• Used for data compression in digital photography
(JPEG).

• Efficient at treating images with many different scales
and structures.

• A digital photograph is just a matrix of numbers. Could
this same data compression method be used to
efficiently solve problems in linear algebra?

• Wavelet bases result in sparse matrices. Faster
algorithms can be used and they require less storage.



Challenges

• Wavelets are fractal valued functions

• How do you evaluate fractal functions {φn(x)}?

f (x) =
∑

fnφn(x)

• How do you calculate integrals involving fractal
functions?

fn =

∫
φ∗n(x)f (x)dx

• How do you calculate derivatives of fractal functions?

f ′′(x) =
∑

fnφ
′′
n(x)

• Why would you want to use them?



What do we mean by a fractal valued function

• Looks like a copy of itself on smaller scales.

• How do we change scales mathematically?

Df (x) =
√

2f (2x)

• Shrinks the support of the function by a factor of 2,
preserving the Hilbert space norm of the function.

• D is called a scaling of dilatation operator



Renormalization group equation
solutions s(x) are fractal!

s(x) = D (
2K−1∑
l=0

hlT
ls(x))︸ ︷︷ ︸

weighted average︸ ︷︷ ︸
rescale

.

T : unit translation D scale transformation

Ts(x) = s(x − 1) Ds(x) =
√

2s(2x).

The renormalization group equation is homogeneous
s(x) a solution implies cs(x) is a solution

the scale c is fixed by∫
dxs(x) = 1



Properties of s(x)

s̃(k) :=
1√
2π

∫ ∞
−∞

e−ikxs(x)dx h̃(k) :=
∑
l

hl√
2
e−ikl .

s̃(k) = s̃

(
k

2

)
h̃

(
k

2

)

s̃(k) = lim
n→∞

s̃(
k

2n
)

n∏
l=1

h̃(
k

2l
) = s̃(0)

∞∏
l=1

h̃(
k

2l
).

k = 0 → 1 =
∞∏
l=1

h̃(0) = h̃(0) =
∑
l

hl√
2∑

l hl =
√

2: Necessary for the renormalization group
equation to have a solution



Support of the solution s(x) to the RG equation

s(x) =
s̃(0)√

2π

∫ ∞
−∞

e ikx
∞∏

m=1

h̃(
k

2m
) =

√
2πs̃(0)

∞∏
m=1

(
N−1∑
l=0

hl√
2
δ(x − l

2m
))

which vanishes for x /∈ [0,N − 1].

Support of s(x) ∈ [0,N − 1] where N is the number of hl ’s
N = 2K



All fractals are not created equal

Additional properties of s(x) depend on the choice of hl

2K−1∑
l=1

hl =
√

2

Additional conditions:∫
s(x − n)s(x −m)dx = δmn

∫
xm

2K−1∑
l=0

(−)lh2K−l−1s(x − l) = 0 m = 0, 1, · · ·K − 1

Conditions define Daubechies K scaling functions:



Meaning of conditions:

• sn(x) := T ns(x) = s(x − n) are orthonormal.

• xm =
∑

n cnsn(x) pointwise for m ≤ K .

• Equations determine hl up to reflection:
hl → h′l = 2k − 1− l . See table:



Weight coefficients for different K values

hl K=1 K=2 K=3

h0 1/
√

2 (1 +
√

3)/4
√

2 (1 +
√

10 +
√

5 + 2
√

10)/16
√

2

h1 1/
√

2 (3 +
√

3)/4
√

2 (5 +
√

10 + 3
√

5 + 2
√

10)/16
√

2

h2 0 (3−
√

3)/4
√

2 (10− 2
√

10 + 2
√

5 + 2
√

10)/16
√

2

h3 0 (1−
√

3)/4
√

2 (10− 2
√

10− 2
√

5 + 2
√

10)/16
√

2

h4 0 0 (5 +
√

10− 3
√

5 + 2
√

10)/16
√

2

h5 0 0 (1 +
√

10−
√

5 + 2
√

10)/16
√

2



Multi-resolution decomposition of L2(R)

Rescale and translate fixed point, s(x)

skn (x) := DkT ns(x) = 2k/2s
(

2k(x − 2−kn)
)
.

Sk := resolution 2−k subspace of L2(R), {skn (x)} basis

Sk := {f (x)|f (x) =
∞∑

n=−∞
cns

k
n (x),

∞∑
n=−∞

|cn|2 <∞}.

Sk := DkS0

Sk ⊂ Sk+n n ≥ 0

Sk+1 = Sk ⊕Wk Wk 6= {∅}.



Multi-resolution decomposition of L2(R)

Sk+1 = Sk ⊕Wk

L2(R) = Sk ⊕Wk ⊕Wk+1 ⊕Wk+2 ⊕Wk+3 ⊕ · · · =

· · · ⊕Wk−2 ⊕Wk−1 ⊕Wk ⊕Wk+1 ⊕Wk+2 ⊕ · · ·

Wavelets ({wk
n (x)} orthonormal basis for Wk)

w(x) :=
2K−1∑
l=0

glT
ls(x) gl = (−)lh2K−1−l

wk
n (x) := DkT nw(x) = 2k/2w

(
2k(x − 2−kn)

)
.



Comments

Orthonormal basis for L2(R):

{skn (x)}∞n=−∞} ∪ {w l
n(x)}∞n=−∞,l≥k

The condition∫
xm

2K−1∑
l=0

(−)lh2K−l−1s(x − l) = 0 m = 0, 1, · · ·K

that determines the hl is equivalent to the requirement∫
xmwk

n (x)dx = 0 ∀k , n and m = 0, 1, · · · ,K − 1



Comments

Completeness implies

f (x) =
∑
n

cns
k
n (x) +

∑
n,l≥k

dnlw
l
n(x)

For f (x) = xm, m < K all the dnl = 0 which means

xm =
∑
n

cns
k
n (x) m < K

where for any x only a finite number of the skn (x) are
non-zero.

This requires that both sides of the equation agree at every x



• This explains why JPEG works. All of coefficients dk
n

associated with structures that are smooth on scale 2−k

vanish, or are very small, resulting in an efficient
representation of the data.

• The transformation relating Sk+n and
Sk ⊕Wk ⊕ · · · ⊕Wk+n is a real orthogonal
transformations, called the wavelet transform, that can
be performed very efficiently.

• The wavelet transformation can be used to recover an
approximation to the original function.



Wierd stuff!

1 =

∫
s(x)dx =

∫
s2(x)dx

• Locally finite sums of fractal functions are locally
infinitely differentiable. This means that a FINITE
number of these functions with complex fractal
boundaries fit together like a jigsaw puzzle!

• Under any magnification the functions do not look like
straight lines, but they are differentiable!









Kernel of a scattering integral equation in the wavelet basis



Computation of fractal basis functions?

Approximation by iteration.
Pick any function s(1; x) satisfying

∫
s(1; x)dx = 1.

s(n; x) =
∑
l

hlDT
ls(n − 1; x)

s(x) = lim
n→∞

s(n; x)

Exact calculation at dyadic rationals,
use the renormalization group equation at dyadic rational

points:

s(n) =
√

2
∑
l

hls(2n − l)
∑
n

s(n) = 1 n = 1, 2, 2K − 2

s(r/2) =
√

2
∑
l

hls(r − l) r =
m

2k



Calculations of integrals use the renormalization group
equation and the scale fixing condition.

All moments of skn (x) and w l
n(x) can be computed exactly.

< xm >skn
:=

∫
xmskn (x)dx

< xm >wk
n

:=

∫
xmwk

n (x)dx



Calculating moments:

< xm >s=

∫
s(x)xmdx < xm >w=

∫
w(x)xmdx .

< x0 >s= (x0, s) =

∫
dxs(x) = 1

Using the renormalization group equation:

< xm >s= (xm, s) = (D−1xm,D−1s)

=
1√
2

1

2m

∑
l

hl(x
m,T ls)

=
1√
2

1

2m

∑
l

hl((x + l)m, s)

=
1√
2

1

2m

∑
l

hl

m∑
k=0

m!

k!(m − k)!
lm−k < xk >s .



Using
∑

l hl =
√

2, and moving the k = m term to the left
side of the above equation gives the recursion relation:

< xm >s=
1

2m − 1

1√
2

m−1∑
k=0

m!

k!(m − k)!

(
2K−1∑
l=1

hl l
m−k

)
< xk >s .

< x >s :=

∫
xs(x)dx =

1√
2

2K−1∑
l=0

lhl .

With this definition we have:∫
(a + bx)s(x)dx = a + b < x >s .



Boundary conditions:

< xm >s:0=

∫ ∞
0

xms(x)dx

The renormalization group equation relates these endpoint
moments to ordinary moments.

The computation reduces to linear algebra.



Integrating functions with small support

One-point quadrature

∑
m

ms(x −m) = x− < x >

which gives

0 =
∑
m

m

∫
xs(x)s(x −m)dx =

∑
m

∫
s(x)x(x− < x >s)dx

=< x >2
s − < x >2

1 .

This means that < x2 >s=< x >2
s or

∫
s(x)p(x)dx = p(< x >s) p(x) = a + bx + cx2.



General methods:

Increasing resolution 2−k :

skn (x) =
2K−1∑
l=0

hls
k+1
2n+l(x)

Replacing wavelets by scaling functions:

wk
n (x) =

2K−1∑
l=0

gls
k+1
2n+l(x)

Changing scale: 2−k → 0

∫
skn1(x) · · · sknm(x)dx = 2

km
2
−k
∫

s0n1(x) · · · s0nm(x)dx



Calculating the k = 0 integrals

Use the renormalization group equation

Γn1,··· ,nk :=

∫
s0n1(x) · · · s0nm(x)dx

Homogeneous equation (RG equation):

Γn1,···nm =
∑

2m/2−1hl1 · · · hlmΓ2n1+l1,··· ,2nm+lm

Inhomogeneous equation: use
∑

sn(x) = 1:∑
n1

Γn1,···nm = Γn2,···nm

Solve the finite linear system



Products of scaling functions and polynomials

Homogeneous equations (RG equation)

Imn1···nk :=

∫
xmsn1(x) · · · snk (x)dx =

2−
2m+k

2

∑
hl1 · · · hlk

∫
xms2n1+l1(x) · · · s2nk+lk (x)dx =

2−m−k/2
∑

hl1 · · · hlk I
m
2n1+l1,···2nk+lk

Inhomogeneous equations∑
n1

Imn1···nk = Imn2···nk



Integrals with derivatives

ds(x)

dx
= 2

∑
hlDT

l ds(x)

dx

Replaces renormalization group equation

x =< x >s +
∑
n

nsn(x)

Normalization condition

1 =
∑
n

n
dsn(x)

dx



A necessary condition for the solution of the scaling equation
to have k derivatives can be obtained by differentiating the

scaling equation k times, which gives

s(k)(x) =
√

22k
∑
l

hls
(k)(2x − l)

Letting x = m and n = 2m − l gives the eigenvalue equation

s(k)(m) =
√

22k
∑
n

h2m−ns
(k)(n)

∑
n

Hmns
(k)(n) = 2−k−

1
2 s(k)(m)

The matrix is (2K − 2)× (2K − 2) which limits the number of
eigenvalues (again - calculus replaced by linear algebra).



Singular integrals

Sn+ :=

∫
sn(x)dx

x + i0+

Renormalization group equation

Sn+ :=
√

2
∑
l

hlS2n−l+

Treatment of singularity

−iπ =
∑
n

∫ a

−a

dxsn(x)

x + i0+
=
∑
n

Sn:a



Sn:a+ =

∫ a

−a

sn(x)dx

x + i0+
=

∫ a−n

−a−n

s(x)dx

1 + x/n
=

1

n

∞∑
k=0

(
−1

n
)k
∫ a−n

−a−n
xks(x)dx

RG equation couples integrals over x = to integrals with
support far from x = 0. The integrals far from the singularity

can be approximated in terms of moments. Rigorous error
bounds can be computed. The evaluation of the integrals

reduce to algebra.



Sn+ =

∫
sn(x)dx

x + i0+
n = −1,−2,−3,−4

Table 2: Singular integrals (K = 3)

S−1+ -0.1717835441734- i4.041140804162
S−2+ -1.7516314066967+ i1.212142562305
S−3+ -0.3025942645356- i0.299291822651
S−4+ -0.3076858066180- i0.013302589081



Integrals with natural logs

L(n) :=

∫ ∞
0

sn(x) ln(x)dx

The renormalization group equations gives

L(n) =
1√
2

(∑
l

hlL(2n + l)− ln(2)

)
.

L(n) for large n can be expressed in terms of moments

L(n) =

∫
sn(x) ln(x)dx =

∫
s(y) ln(n(1 + y/n))dy

= ln(n)−
∞∑

m=1

(−1)m

m

< xm >s

nm
.



Table 2: Log integrals

K = 2

n = −2
∫
sn(x) ln |x |dx 0.456927033732831

n = −1
∫
sn(x) ln |x |dx −1.64215549088219

K = 3

n = −4
∫
sn(x) ln |x |dx 1.15737952417967

n = −3
∫
sn(x) ln |x |dx 0.750468355278047

n = −2
∫
sn(x) ln |x |dx 0.315624303943019

n = −1
∫
sn(x) ln |x |dx −1.83646456399118



Autocorrelation function

A(x) :=

∫
s(x − y)s(y)dy

Renormalization group equation for A(x)

A(x) =
∑
m,n

hmhnA(2x −m − n)

al =
1√
2

∑
n

hl−nhn

A(x) =
4K−2∑
l=0

alDT
lA(x)

Scale fixing for A(x)∫
A(x) = 1



Autocorrelation function A(x)
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Integrals with moving singularities

Jk−m−n :=

∫
sm(x)sn(y)dxdy

k − x − y + i0+
=

∫
A(x)dx

k −m − n − x + i0+

Renormalization group equation for A(x)

Jn =
√

2
∑
l

alJ2n−l

1 =
∑
n

A(x + n)

iπ =
∑
n

∫ a

−a

A(x + n)dx

−x + i0+
=
∑
n

Jn:a



Applications

• Solving scattering integral equations.

• Eliminating short distance degrees of freedom in
quantum field theory.

• Exact discrete representations of quantum field theory.



Conclusions

• Daubechies wavelets are a useful basis for problems
involving multiple scales.

• Standard numerical methods do not work very well when
applied to fractal functions.

• In most cases the standard numerical methods can be
replaced by new methods based on the renormalization
group equation.

• The calculations of derivatives and integrals are replaced
by linear algebra.

• Basis provides local control over resolution while
remaining efficient.



xxx



Example: Dmn

0 unless the support of sm and sn overlap

Dmn = Dm−n,0 =

∫
dsm(x)

dx

dsn(x)

dx
dx

non-zero solutions have exact rational values

D40 = D−40 = −3/560

D30 = D−30 = −4/35

D20 = D−20 = 92/105

D10 = D−10 = −356/105

D00 = 295/56.



U(λ) = eK(λ), K (λ) = [G (λ),H(λ)]

where G (λ) is the part of H(λ) with the operators that
couple different scales turned off. With this choice
G (λ) = G †(λ) so K (λ) is anti-Hermetian.

It follows that

dH(λ)

dλ
= [K (λ),H(λ)] = [H(λ), [H(λ),G (λ)]].

H(λ) is block diagonal when [H(λ),G (λ)] = 0.
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Approximation Space

I For large m and smooth f (x)

f (x) ≈
∑
n

fnφ−mn(x)

fn =

∫
φ−mn(x)f (x)dx ≈ 2−m/2f (

n

2m
)

I Expansion coefficients proportional to function values on support of φ−mn.



K = 3 Wavelet and Scaling Function
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Unit Translates
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Daubechies−2 Scaling Functions Translated



Constant Function
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Summing Daubechies−2 Wavelets to Represent a Constant Function



Linear Function
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Summing Daubechies−2 Wavelets to Represent a Linear Function



Local Polynomials

L2(R) = · · · ⊕Wm−2 ⊕Wm−1 · · · ⊕Wm ⊕ Vm∫
ψmnx

l = 0 ∀m, n; l = 0, 1, · · · ,K − 1

⇓

∴ x l =
∑
n

cnφmn(x) pointwise



Computation of φ(x) and ψ(x)

I φ(x) at integer points can be obtained by solving:

φ(n) =
2K−1∑
l=0

√
2hlφ(2n − l)

∑
n

φ(n) = 1

I The support of φ(x) ∈ [0, 2K − 1].

⇓

φ(n) = 0 n ≤ 0 or n ≥ 2K − 1



Computation of φ(x) and ψ(x)

I The scaling equation generates ψ and φ recursively at all
dyadic rationals:

φ(
n

2k
) =

2K−1∑
l=0

√
2hlφ(

n

2k−1
− l)

ψ(
n

2k
) =

2K−1∑
l=0

√
2glφ(

n

2k−1
− l)



K = 3 Wavelet and Scaling Function
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Approximation Spaces

I There are two approximation spaces related by a fast
orthogonal transformation (o(N)).

Vm ⇔Wm+1 ⊕Wm+2 ⊕ · · · ⊕Wm+k ⊕ Vm+k

with orthonormal bases

{φmn(x)}∞n=−∞
m

{φm+k n(x)}∞n=−∞ ∪ {ψln(x)}∞,m+k
n=−∞,l=m+1



Interesting Properties

I Wavelets are fractals.

I Basis functions are generated from a single “Mother” function
by translations and dyadic scale changes.

I “Mother” function constructed from solution (“Father”
function = scaling function) of a linear renormalization-group
equation.



Useful Numerical Properties

I Basis functions have compact support.

I Basis functions are orthonormal.

I Basis functions never have to be computed.

I The wavelet transform automatically eliminates unimportant basis functions.

I Basis functions can locally pointwise represent polynomials.

I Wavelets lead to efficient treatment of scattering singularities.

I There is an efficient one-point quadrature rule.



Why are Wavelets Interesting ?

I Efficient representation of information.

I Used in the FBI’s fingerprint archive.

I Used in the JPEG2000 image compression algorithm.

I Fast reconstruction of information.

I Natural basis for functions with smooth structures on multiple
scales.



Structure of equation:

f (x) = g(x) +

∫
K(x , y)

y
f (y)dy

f =
∑

fnφn(x) xn = 〈x1〉φn

fm = g(xm) +
∑
n

(
K(xm, yn)− K(xm, 0)

yn
+ K(xm, 0)In

)
fn

f (x) = g(x) +
∑
n

(
K(x , yn)− K(x , 0)

yn
+ K(x , 0)In

)
fn



Transformed Kernel


