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Outline

Background and motivation.

Fractals self-similarity and the renormalization group.

Numerical analysis using the renormalization group.

Applications.



Standard numerical methods

e Designed to work with functions that with enough
maghnification locally look like straight lines.

e Global basis functions {¢,(x)} are often associated with
a scale. They may have to be rescaled {\/a¢,(ax)} to
efficiently represent structures on a given scale.

()= fubn(x)  fo= / F(x)6%(x) dx

e Global basis functions (orthoginal polynomials, Laguerre
functions, Hermite functions) can have difficulties
dealing with local structures, or structures on multiple
scales.



Motivation for considering wavelets

Used for data compression in digital photography
(JPEG).

Efficient at treating images with many different scales
and structures.

A digital photograph is just a matrix of numbers. Could
this same data compression method be used to
efficiently solve problems in linear algebra?

Wavelet bases result in sparse matrices. Faster
algorithms can be used and they require less storage.



Challenges

Wavelets are fractal valued functions

How do you evaluate fractal functions {¢,(x)}?

F(x) = fadn(x)

How do you calculate integrals involving fractal
functions?

m:/ﬁam@w
How do you calculate derivatives of fractal functions?
F'(x) = > fadn(x)

Why would you want to use them?



What do we mean by a fractal valued function

Looks like a copy of itself on smaller scales.

How do we change scales mathematically?
Df (x) = v2f(2x)

Shrinks the support of the function by a factor of 2,
preserving the Hilbert space norm of the function.

D is called a scaling of dilatation operator



Renormalization group equation
solutions s(x) are fractal!

2K-1

s(x)=D () hT's(x)) .
1=0

weighted average

rescale
T: unit translation D scale transformation

Ts(x) = s(x — 1) Ds(x) = V/25(2x).

The renormalization group equation is homogeneous
s(x) a solution implies cs(x) is a solution
the scale c is fixed by

/dxs(x) =1



Properties of s(x)

-5 ()5()
5(k) = lim 5(50) [ () = 50) [T A(ay)
=1 =1

Yo = v/2: Necessary for the renormalization group
equation to have a solution



Support of the solution s(x) to the RG equation

which vanishes for x ¢ [0, N — 1].

Support of s(x) € [0, N — 1] where N is the number of h;’s
N =2K



All fractals are not created equal

Additional properties of s(x) depend on the choice of A,

2K-1

> h=v2
=1

Additional conditions:

/s(x — n)s(x — m)dx = Imp

2K-1

/Xm Z (*)/h2K—/_1S(X —-1)=0 m=0,1,---K—1

=0

Conditions define Daubechies K scaling functions:



Meaning of conditions:

e s5,(x) := T"s(x) = s(x — n) are orthonormal.

e XM =% cpsn(x) pointwise for m < K.

e Equations determine h; up to reflection:
hy — h; = 2k — 1 —|. See table:



Weight coefficients for different K values

hi | K=1 [ K=2 K=3
ho | 1/v2 | (1++/3)/4v2 | (14 V10 + v/5 + 21/10)/16V2
ho| 1/vV2 | 3+V3)/4v2 | (5+ V10 + 35+ 21/10)/16v/2
hy | 0 (3 —+/3)/4v2 | (10 — 2¢/10 + 2¢/5 + 21/10)/161/2
hs | 0 (1 —+/3)/4v2 | (10 — 2y/10 — 2¢/5 + 21/10)/16+/2
ha | O 0 (54 V10 — 3v/5 + 2v/10)/161/2
hs | O 0 (14 V10 — /5 +21/10)/16v/2




Multi-resolution decomposition of L2(R)

Rescale and translate fixed point, s(x)

sK(x) 1= DKT"s(x) = 2k/2s <2k(x - 2_kn)) .

n

Sy := resolution 2~ subspace of L?(R), {s¥(x)} basis
Sk = {f(X)|f(x) = Z cnsk(x), Z cn|? < o0}
Sk == D*Sg

SkCSk—i-n n>0

Sk+1 =Sk D Wi Wi 75 {@}



Multi-resolution decomposition of L?(R)
Sky1 = Sk © Wi
LP(R) = Sk @ Wk @ W1 ©Wii2 ®Why3 @ -+ =
DWWk OWi1 EWk O Wip1 @ Wigo @ -+
Wavelets ({w/(x)} orthonormal basis for W)

2K-1
w(x) = Z gaT's(x) & =(-)hk-1-
1=0

wk(x) := D*T"w(x) = 2K/?w (Zk(x — 2_kn)> .



Comments

Orthonormal basis for L2(R):

{sK() 2 oo} U {WI{I(X)}ﬁo:foo,lzk
The condition

2K-1

/Xm Z (=) hak—j—15(x — 1) =0 m=0,1,---K
1=0
that determines the h; is equivalent to the requirement

/me,’;(x)dx—O Vk,n and m=0,1,--- ,K—1



Comments

Completeness implies

FX) = cask(x) + > duwh(x)

n, >k

For f(x) = x™, m < K all the d,; = 0 which means

xM = Z cnsk(x) m< K
n

where for any x only a finite number of the s%(x) are
non-zero.

This requires that both sides of the equation agree at every x



e This explains why JPEG works. All of coefficients d*
associated with structures that are smooth on scale 2=
vanish, or are very small, resulting in an efficient
representation of the data.

e The transformation relating Sy, , and
Sk OWk @ -+ ® Wy, is a real orthogonal
transformations, called the wavelet transform, that can
be performed very efficiently.

e The wavelet transformation can be used to recover an
approximation to the original function.



Wierd stuff!

1= /s(x)dx: /sz(x)dx

e Locally finite sums of fractal functions are locally
infinitely differentiable. This means that a FINITE
number of these functions with complex fractal
boundaries fit together like a jigsaw puzzle!

e Under any magnification the functions do not look like
straight lines, but they are differentiable!



Daubechies Wavelets

Scaling Function ¢(x)
Wavelet Function y(x)




Translations and Dilations —¢i I(x)




Daubechies-2 Wavelets
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Kernel of a scattering integral equation in the wavelet basis
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Computation of fractal basis functions?

Approximation by iteration.
Pick any function s(1; x) satisfying [ s(1;x)dx = 1.

s(n; x) = Z hDT's(n—1;x)
/

s(x) = lim s(n;x
(x) = lim s(m;x)
Exact calculation at dyadic rationals,
use the renormalization group equation at dyadic rational
points:

:\/§Zh/s(2n—l) Zs(n)zl n=1,22K-2
I

n

s(r/2) = \[Zh/sr—l rzz—rz



Calculations of integrals use the renormalization group
equation and the scale fixing condition.

All moments of s%(x) and w/(x) can be computed exactly.

<X > ge= /x'"s,’,‘(x)dx

<XT > = /xmw,lf(x)dx



Calculating moments:
<X >e= /s(x)xmdx <xT >y= / w(x)x™dx.
<x?>=(x%s) = /dxs(x) =1

Using the renormalization group equation:

< xM >¢= (x’” s) = (D_lx’", D™ 1s)

\[2’" Zh/



Using >, h = V2, and moving the k = m term to the left
side of the above equation gives the recursion relation:

m— 2K—-1
< XM > = o Z (- k (Zh,/’” k><x > .

2K-1

<X >gi= /xs Z Ih;.

With this definition we have:

/(a+bx)s(x)dx_a+b<x>s.



Boundary conditions:

o0
< xM >s;0:/ xMs(x)dx
0

The renormalization group equation relates these endpoint
moments to ordinary moments.

The computation reduces to linear algebra.



Integrating functions with small support

One-point quadrature

st(x—m):x—<x>

m

which gives

0= Zm: m/xs(x)s(x — m)dx = Zm:/s(x)x(x— < X >g)dx

=<x>2—<x>7.

This means that < x*> >,=< x >2 or

/s(x)p(x)dx = p(< x >5) p(x) = a+ bx + ox?.



General methods:

Increasing resolution 27%:

2K-1
k+1
Z h/ n+l

Replacing wavelets by scaling functions:

2K-1

2 : k+1
815 n+l

Changing scale: 27 — 0

/s,’,‘l(x) csK (x)dx = 2k§nk/sgl(x) -89 (x)dx



Calculating the k = 0 integrals

Use the renormalization group equation

Chg e np o= /sgl(x)~--s,?m(x)dx
Homogeneous equation (RG equation):

m/2—1
[y, —E 2m2 by Do e 20t

Inhomogeneous equation: use ) sp(x) = 1:
E :rm,---nm = r"27"'nm
m

Solve the finite linear system



Products of scaling functions and polynomials

Homogeneous equations (RG equation)
oy = /Xms”l(x)"'snk(x)dx =
2m+k
S by [ XS () s () =

—m—k/2 m
2 / g hiy -y b v 2nt,

Inhomogeneous equations

§ : m _m
Inl---nk - ln2---nk
n



Integrals with derivatives

ds(x) ;ds(x)
=2 > DT -

Replaces renormalization group equation

X =< X>s+ Z nsp(x)

n

Normalization condition

dsp(x)
1= _
zn: n dx



A necessary condition for the solution of the scaling equation
to have k derivatives can be obtained by differentiating the
scaling equation k times, which gives

s (x) = V22K > " st (2x — 1)
i

Letting x = m and n = 2m — | gives the eigenvalue equation

st (m) = v/22F Z hom-—ns¥)(n)

Z Hpnns¥) (n) = 2_k_%s(k)(m)

The matrix is (2K — 2) x (2K — 2) which limits the number of
eigenvalues (again - calculus replaced by linear algebra).



Singular integrals

s / sn(x)dx
e xriot

Renormalization group equation

Snt = \@Z h1Son— 1+
]

Treatment of singularity

_’”_Z/ j)in/m ZS“




RG equation couples integrals over x = to integrals with
support far from x = 0. The integrals far from the singularity
can be approximated in terms of moments. Rigorous error
bounds can be computed. The evaluation of the integrals
reduce to algebra.



Table 2: Singular integrals (K = 3)

So1+
S oy
S-3+
S gy

-0.1717835441734- i4.041140804162
-1.7516314066967+ i1.212142562305
-0.3025942645356- 10.299291822651
-0.3076858006180- 10.013302589081




Integrals with natural logs

L(n) = /OOO sn(x) In(x)dx

The renormalization group equations gives

L(n) = (Z hiL(2n+1) |n(2)>
L(n) for large n can be expressed in terms of moments
L(n) = /s,,(x)ln(x)dx = /s(y)ln(n(l + y/n))dy
i m < xm >S

m=1




Table 2: Log integrals

—1.83646456399118

K=2

n=—21 [ss(x)In|x|dx | 0.456927033732831

n=—1| [su(x)In|x|dx | —1.64215549088219

K =

n= 4| [si(x)In|x|dx | 1.15737952417967

n= -3 [sy(x)In|x|dx | 0.750468355278047

n=—2| [ss(x)In|x|dx | 0.315624303943019
T on)




Autocorrelation function
A) = [ stx =)ty
Renormalization group equation for A(x)

A(x) = hmhaA(2x — m — n)

1
a| = \ﬁ Z hi—nhn

4K—-2

A(x)= Y aDT'A(x)
I=0

Scale fixing for A(x)

/A(x) =1



Autocorrelation function A(x)




Integrals with moving singularities

S = / Zm(X)Sn(Y)d{dy _ / A(x)dx

—x—y+i0t k—m—n—x+i0t
Renormalization group equation for A(x)

Jn = \fQZ ajbon—i
I
1= ZA(X—i— n)
m= 3 [ R = e



Applications

e Solving scattering integral equations.

e Eliminating short distance degrees of freedom in
quantum field theory.

e Exact discrete representations of quantum field theory.



Conclusions

Daubechies wavelets are a useful basis for problems
involving multiple scales.

Standard numerical methods do not work very well when
applied to fractal functions.

In most cases the standard numerical methods can be
replaced by new methods based on the renormalization
group equation.

The calculations of derivatives and integrals are replaced
by linear algebra.

Basis provides local control over resolution while
remaining efficient.



XXX



Example: Dpyn
0 unless the support of s,, and s, overlap

dsm(x) dsp(x)

dx dx dx

Dmn = Dmfn,O =

non-zero solutions have exact rational values
Dao = D_40 = —3/560
D3g = D_30 = —4/35
Doy = D_pp = 92/105
D1p = D_10 = —356/105
Doo = 295/56.



where G(2) is the part of H()\) with the operators that
couple different scales turned off. With this choice
G()\) = GT(\) so K()\) is anti-Hermetian.

It follows that

dH())

T = KO), HOOL = [HV), [HV), G-

H()) is block diagonal when [H()), G(A\)] = 0.






A =.02







A =20




Approximation Space

» For large m and smooth f(x)
F)~ 3 ()

n
om

)

» Expansion coefficients proportional to function values on support of ¢_pmn.

fo = /¢—mn(x)f(x)dx ~ 2—m/2f(



K = 3 Wavelet and Scaling Function

Scaling Function

Wavelet Function




Unit Translates

AN NN

N




Constant Function

Summing Daubechies-2 Wavelets to Represent a Constant Function

A




Linear Function

Summing Daubechies-2 Wavelets to Represent a Linear Function




Local Polynomials

LZ(R):"'@Wmfz@wmfl"'GBWm@Vm
/1/)mnx’:0 Ym,n; 1=0,1,--- ., K—1

x' = Z Cn®mn(X) pointwise




Computation of ¢(x) and (x)

> ¢(x) at integer points can be obtained by solving:

2K -1
¢(n)= > V2me(2n—1) > ¢(n) =1
/=0 n
» The support of ¢(x) € [0,2K —1].

4

¢(n) =0 n<0 or n>2K-1



Computation of ¢(x) and (x)

» The scaling equation generates i and ¢ recursively at all
dyadic rationals:

2K-1

W) = . V2ol — 1)
1=0

2K-1

bp) = Y V2gelzer — )
/=0



K = 3 Wavelet and Scaling Function

Scaling Function

Wavelet Function




Approximation Spaces

» There are two approximation spaces related by a fast
orthogonal transformation (o(N)).

Vm = Wm+1 ©® Wm+2 b---D Wm+k D Verk

with orthonormal bases
{bmn(x) e o
i}

{bmkn(x) 150 U {uim (Y225



Interesting Properties

> Wavelets are fractals.
» Basis functions are generated from a single “Mother” function
by translations and dyadic scale changes.

» “Mother” function constructed from solution (“Father”
function = scaling function) of a linear renormalization-group
equation.



Useful Numerical Properties

Basis functions have compact support.

Basis functions are orthonormal.

Basis functions never have to be computed.

The wavelet transform automatically eliminates unimportant basis functions.
Basis functions can locally pointwise represent polynomials.

Wavelets lead to efficient treatment of scattering singularities.

vV VvVyVvVvyVvVYyywy

There is an efficient one-point quadrature rule.



Why are Wavelets Interesting 7

Efficient representation of information.
Used in the FBI's fingerprint archive.
Used in the JPEG2000 image compression algorithm.

Fast reconstruction of information.

vVvYyyvyy

Natural basis for functions with smooth structures on multiple
scales.



Structure of equation:
() = g(x) + / KV 1(y)ay
F=> fbn(x)  xo= (",
£ (m +Z< alic y" K(X’” D | K(xm ,o)ln) f,

) =g + 3 (K0 ke K0




Transformed Kernel




