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Outline

Background and motivation.

Fractals self-similarity and the renormalization group.

Numerical analysis using the renormalization group.

Applications.



Standard numerical methods

e Designed to work with functions that with enough
magnification locally look like straight lines.

e Global basis functions (orthogonal polynomials, Laguerre
functions, Hermite functions) are not efficient for
representing local structures, or structures on multiple
scales.

) =3 futnl) o= [ ()50



Wavelets are basis functions that can overcome these
difficulties

Used for data compression in digital photography
(JPEG).

Efficient at treating images with many different scales
and structures.

A digital photograph is just a matrix of numbers. Could
this same data compression method be used to
efficiently solve problems in linear algebra?

Wavelet bases result in sparse matrices. Faster
algorithms can be used and they require less storage.



Challenges/questions

Wavelets are fractal valued functions.

How do you evaluate fractal functions {¢,(x)}?

F(x) = fadn(x)

How do you calculate integrals involving fractal
functions?

m:/ﬁam@w
How do you calculate derivatives of fractal functions?
F'(x) = > fadn(x)

Why would you want to use them?



What do we mean by a fractal valued function

Looks like a copy of itself on smaller scales.

How do we change scales mathematically?
Df (x) = v2f(2x)

Shrinks the support of the function by a factor of 2,
preserving the Hilbert space norm of the function.

D is called a scaling or dilatation operator



Renormalization group equation
2K-1

s()=D (> mT's(x)) .
1=0

weighted average

rescale

solutions s(x) are fractal!
T: unit translation D scale transformation
Ts(x) =s(x—1) Ds(x) = v25(2x).
h; are numbers
The renormalization group equation is homogeneous

s(x) a solution implies cs(x) is a solution
the scale c is fixed by

/dxs(x) =1



Properties of s(x)

S(k) = \/12? / T eks(x)dx  R(K) :Zh’ze—"k’.
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h; = \/2: Necessary for the renormalization group
equation to have a solution



Support of the solution s(x) to the RG equation

2 0 m=1
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which vanishes for x ¢ [0, N — 1] = [2K — 1].

Support of s(x) C [0,2K — 1] where N = 2K is the number of
h/’S
Support is compact!



All fractals are not created equal

Additional properties of s(x) depend on the choice of h,

2K-1

> h 2
=1

Additional conditions:

/s(x —n)s(x — m)dx = dpmp
2K-1

/X"’ Z gis(x—Ndx=0 m=0,1,---K—1
1=0

g = () hk i1

Conditions define Daubechies K scaling functions:



Ingrid Daubechies




Meaning of conditions:

sn(x) := T"s(x) = s(x — n) are orthonormal.

x™ =" cnSn(x) pointwise for m < K.

2,251*1 h; = v/2 necessary for existence of solution.

Equations determine h; up to reflection:
h;y — h; = hak_1_;. See table:



Weight coefficients h; for different K values

hi | K=1 [ K=2 K=3
ho | 1/v2 | (1++/3)/4v2 | (14 V10 + v/5 + 21/10)/16V2
ho| 1/vV2 | 3+V3)/4v2 | (5+ V10 + 35+ 21/10)/16v/2
hy | 0 (3 —+/3)/4v2 | (10 — 2¢/10 + 2¢/5 + 21/10)/161/2
hs | 0 (1 —+/3)/4v2 | (10 — 2y/10 — 2¢/5 + 21/10)/16+/2
ha | O 0 (54 V10 — 3v/5 + 2v/10)/161/2
hs | O 0 (14 V10 — /5 +21/10)/16v/2




Basis construction (L?(R))
Rescale and translate fixed point, s(x)
sK(x) 1= D¥Ts(x) = 2k/2s <2k(x - 2_kn)> .
Support of sX(x) is [27%n,27K(n + 2K — 1)]

Sk := resolution 2~ subspace of L?(R):

Si={f()IF(x)= D cusn(x), D lcal* < oo}
Sk = DkSO

Renormalization group equation implies
Sk C Sk-i-n n>0

Skr1 = Sk & Wy Wi # {0}.



Multi-resolution decomposition of L?(R)
Skt1 = Sk B Wy
Iterate
[2(R) = Sk ® Wik ® Wis1 ®Wiga ®Wiy3 ® --- =
o B Wik @ Whe1 @ Wik @ Wip1 @ Wik @ - -+
Wavelets ({w/(x)} orthonormal basis for W)

2K-1
w(x) =D Z gaT's(x) & =(-)hwk-1-
1=0

n

wk(x) = D¥T"w(x) = 2K?w (2k(x - 2_kn)> .

Same support as {s(x)}



Comments

Orthonormal basis for L?(R):

k ) / ‘
{sn () FnZ—oot UAWR(X)FnZ o 12k
All basis functions constructed from a single function s(x).

The condition
2K—1

/}mE:@qx—nzo m=0,1,---K
1=0

that determines the h, is equivalent to the requirement

/me,lf(x)dx_O Vk,n and m=0,1,---,K—1



Local pointwise polynomial condition

Completeness implies

F() = 3 cnsk(x) + 3 duwh(x)

n, >k

For f(x) = x™, m < K all the d,; = 0 which means

xM = Z cnsk(x) m< K
n

where for any x only a finite number of the sX(x) are
non-zero.

This requires that both sides of the equation agree at every x



This explains why JPEG works. All of coefficients d*
associated with structures that are smooth on scale 2%
vanish, or are very small, resulting in an efficient
representation of the data.

The transformation relating S, and

Sk ®Wi @ -+ @ Wiy, is a real orthogonal
transformations, called the wavelet transform, that can
be performed very efficiently.

The wavelet transformation can be used to recover an
approximation to the original function.

Basis allows natural resolution and volume truncations.



Weird stuff!

1= /s(x)dx = /52(x)dx

Y N
setting scale  normalization

e Locally finite sums of fractal functions can be
differentiable. This means that a FINITE number of
these functions with complex fractal boundaries fit
together like a jigsaw puzzle!

e Under any magnification the functions do not look like
straight lines, but they are differentiable!



Daubechies Wavelets

Scaling Function ¢(x)
Wavelet Function y(x)




As K increases:

Support increases,

Smoothness increases,

Number of non-zero functions at a point increases



Translations and Dilations —¢i I(x)




Daubechies-2 Wavelets
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Kernel, K(x, y) of a scattering integral equation after wavelet
transform

F(x) = D(x) + [ K(x,y)F(y)dy

—
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Advantages of Daubechies wavelets

Basis for L2(R).
Basis functions have compact support.

Infinite number of basis functions with support in any
open set.

Basis functions have limited (controllable) smoothness.
2k/25k(x) are locally finite partitions of unity.
Efficient at representing problems with multiple scales.

In many applications basis functions do not have to be
computed.



To

do numerical analysis with fractal functions you need to
be able to:

Evaluate basis functions.

Evaluate expansion coefficients.

Integrals of polynomials x basis functions.
Implement boundary conditions.

Integrate products of basis functions x polynomials.
Evaluate derivatives of basis functions.

Evaluate products of basis functions, derivatives of basis
functions and polynomials.

Evaluate singular integrals.

Evaluate integrals with moving singularities.



Standard methods cannot be used to satisfy these
requirements.

The renormalization group equation is a new computational
tool!

The renormalization group equation and the scale fixing
condition provide a means to solve the problems on the
previous slide!



Computation of fractal basis functions?

Approximation by iteration.
Pick any function fi(x) satisfying [ fi(x)dx = 1.

=Y hDT'f,_1(x)
/

s(x) = lim f,(x)

n—oo

Exact calculation at dyadic rationals,
use the renormalization group equation at dyadic rational
points:

=V2) hs2n—1) D> s(n)=1 n=1,2--2K-2
i

s(r/2) = \[Zh/sr—/ r:ﬂk



Calculations of integrals use the renormalization group
equation and the scale fixing condition.

All moments of s%(x) and w/(x) can be computed exactly.

]. 3nm

< XM > o= /xmsg(x)dx = ;)% /(x + n)™s(x)dx



Calculating moments:
<X >e= /s(x)xmdx <xT >y= / w(x)x™dx.
<x¥>=(x%s) = /dxs(x) =1

Using the renormalization group equation:

< xM >¢= (x’" s) = (D_lx’", D™ 1s)

\fzm Zh/



Using >, h = v/2, and moving the k = m term to the left
side of the above equation gives the recursion relation:

11 m A&
m _ L h/mk .
X ST om 1B 2 Kl(m = k).(/Z; / ><X =

Note kK < m

2K-1

<x>5::/ x)dx = — Z Ih;.

With this definition:

/(a+bx)s(x)dx:a+b<x>5.



Boundary conditions:

[ee]
< x™M >sn:0:/ xMsp(x)dx
0

The renormalization group equation relates these endpoint
partial moments to ordinary moments.

The computation reduces to linear algebra.



Integrating functions with small support
One-point quadrature

Property of moments

/x2s(x)dx = (/xs(x)dx)2
< X2 >e=< x >2
/‘ p(x)s(x)dx = /(a + bx + cx?)s(x)dx =
a+b(x)s + cx)5 = p((x)s)

2K-1

1
(x)s = 7 /; Ih;.



General methods - integrals of products of basis functions:

Step 1: Increasing resolution 27*:

2K-1

Z hisy i (x)
Step 2: Replacing wavelets by scaling functions:

2K-1

k1
E : 81Sy1-1(%

Step 3: Changing scale: 27% — 0

/s,’,‘l(x) csK (x)dx = 2k§nk/sgl(x) -89 (x)dx



Calculating the k = 0 integrals

Step 4:Use the renormalization group equation

Cng e 1= /sgl(x) 89 (x)dx use np =0
Homogeneous equation (RG equation):

m/2—1
iy, —E 2m/ 2y by Do e 20t

Step 5: Inhomogeneous equation: use ) s,(x) = 1:
Z S
ny

Step 6: Solve the finite linear system



Integrating products of scaling functions and polynomials
Homogeneous equations (RG equation)
By = [ o0 () (<)o =
_2mtk m
22 Z hi - hy [ XS24 (x) - '52n/<+/k(x)dx =

—m—k/2 § : m
2 / h/1 T h/k l2n1+/1,~~~2nk+lk

Inhomogeneous equations
m _m
§ :Inl---nk - lnz---nk
ny

Solve using linear algebra and recursion on k.



A necessary condition for the solution of the RG equation to
have k derivatives can be obtained by differentiating the RG
equation k times, which gives

dks( )( f2kzh d S(X) —/)

dxk

Letting x = m and n = 2m — | gives the eigenvalue equation
dk s K
dX 2 Z h2m nd k

d*s _1d*s
; Himn-_ 7 (n) = 2772 27 (m)

The matrix is (2K — 2) x (2K — 2) which limits the number of
eigenvalues (again - calculus replaced by linear algebra).



Derivatives of basis functions

ds(x) ;ds(x)
== 22 hDT —

Replaces renormalization group equation

Differentiate

X =< X >, +Z nsp(x)

n

to get a normalization condition

dsn(x)
1=
Zn: g dx




Example: Integral of product of derivatives (K = 3)
0 unless the support of s,, and s, overlap

dsm(x) dsp(x)

dx dx dx

Dmn = Dmfn,O =

non-zero D,, o have exact rational values
Dsg = D_49 = —3/560
D3g = D_30 = —4/35
Do = D_p9 = 92/105
Dig = D_19 = —356/105
Doo = 295/56.



Singular integrals

St / s,,(x).dx

x + 0t

Renormalization group equation

ST=v2Y hSi.,
i

Treatment of singularity (partition of unity)

dXSn +
—IW—Z/ X—|—IO+: - Sn:a



ot _/a sn(x)dx _1/"_” s(x)dx
ma | x+i0t  n)_, ,1+x/n

L=, —1 (77" 4

— — x"s(x)dx

) | kst
RG equation couples integrals over x = 0 to integrals with

support far from x = 0. The integrals far from the singularity
can be approximated in terms of moments. Rigorous error
bounds can be computed. The evaluation of the integrals
reduce to algebra.



SH=

n

/5”(X)dx n=-1,-2,-3,—4

x + 0t

Table 2: Singular integrals (K = 3)

So1+
S oy
S-3+
S gy

-0.1717835441734- i4.041140804162
-1.7516314066967+ i1.212142562305
-0.3025942645356- 10.299291822651
-0.3076858006180- 10.013302589081




Integrals with natural logs

L(n) = /OOO sn(x) In(x)dx

The renormalization group equations gives

L(n) = (Z hiL(2n+1) |n(2))
L(n) for large n can be expressed in terms of moments
L(n) = / $2(x) In(x)dx = / s(y) In(n(L+ y/n))dy
i m < xm >S

m=1




Table 2: Log integrals

—1.83646456399118

K=2

n=—21 [ss(x)In|x|dx | 0.456927033732831

n=—1| [su(x)In|x|dx | —1.64215549088219

K =

n= 4| [si(x)In|x|dx | 1.15737952417967

n= -3 [sy(x)In|x|dx | 0.750468355278047

n=—2| [ss(x)In|x|dx | 0.315624303943019
T on)




Autocorrelation function
A) = [ stx =)ty
Renormalization group equation for A(x)

A(x) = hmhaA(2x — m — n)

1
a| = \ﬁ Z hi—nhn

4K—-2

A(x)= Y aDT'A(x)
I=0

Scale fixing for A(x)

/A(x) =1



Autocorrelation function A(x) (K=3)




Integrals with moving singularities

¥ o / Sm(x)sn(y)dxdy / A(x)dx
kem=n = | ok —x—y+i0t ) k=m—n—x+i0"

Renormalization group equation for A(x)

Jn = \fQZ ajbon—i
I
1:§:mx+m
m= 3 [ R = e



Applications (my interests)

e Solving singular integral equations for scattering and
imaging.

e Renormalizing equations of quantum field theory.

Detemine how parameters of theory behave as a function
of resolution and volume for fixed measured quantities.
Looking for fixed point.

e Path integral representations of quantum field theory.

Replaces time evolution of system with an infinite
number of degrees of freedom by an infinite dimensional
integral. Important for quantum computing.



Conclusions

Daubechies wavelets are a useful basis for problems
involving multiple scales.

Standard numerical methods do not work very well when
applied to fractal functions.

In most cases the standard numerical methods can be
replaced by new methods based on the renormalization
group equation.

The calculations of derivatives and integrals are replaced
by linear algebra.

Basis provides control over resolution and volume while
remaining efficient.
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