Multi-scale methods in numerical analysis

W. N. Polyzou

Other contributors: Gerald Payne, Brian Kessler, Fatih Bulut, Tracie Michlin

The University of Iowa

Outline

• Background and motivation.

• Fractals self-similarity and the renormalization group.

• Numerical analysis using the renormalization group.

• Applications.

Standard numerical methods

- Designed to work with functions that with enough magnification locally look like straight lines.
- Global basis functions (orthogonal polynomials, Laguerre functions, Hermite functions) are not efficient for representing local structures, or structures on multiple scales.

$$f(x) = \sum_{n} f_n \phi_n(x)$$
 $f_n = \int f(x) \phi_n^*(x) dx$

Wavelets are basis functions that can overcome these difficulties

- Used for data compression in digital photography (JPEG).
- Efficient at treating images with many different scales and structures.
- A digital photograph is just a matrix of numbers. Could this same data compression method be used to efficiently solve problems in linear algebra?
- Wavelet bases result in sparse matrices. Faster algorithms can be used and they require less storage.

Challenges/questions

- Wavelets are fractal valued functions.
- How do you evaluate fractal functions $\{\phi_n(x)\}$?

$$f(x)=\sum f_n\phi_n(x)$$

• How do you calculate integrals involving fractal functions?

$$f_n = \int \phi_n^*(x) f(x) dx$$

• How do you calculate derivatives of fractal functions?

$$f''(x) = \sum f_n \phi_n''(x)$$

• Why would you want to use them?

What do we mean by a fractal valued function

• Looks like a copy of itself on smaller scales.

• How do we change scales mathematically?

$$Df(x) = \sqrt{2}f(2x)$$

• Shrinks the support of the function by a factor of 2, preserving the Hilbert space norm of the function.

• *D* is called a scaling or dilatation operator

Renormalization group equation

The renormalization group equation is homogeneous s(x) a solution implies cs(x) is a solution the scale c is fixed by

$$\int dx s(x) = 1$$

Properties of s(x)

$$\tilde{s}(k) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} s(x) dx \qquad \tilde{h}(k) := \sum_{l} \frac{h_{l}}{\sqrt{2}} e^{-ikl}.$$
$$\tilde{s}(k) = \tilde{s}\left(\frac{k}{2}\right) \tilde{h}\left(\frac{k}{2}\right)$$

$$\tilde{s}(k) = \lim_{n \to \infty} \tilde{s}(\frac{k}{2^n}) \prod_{m=1}^n \tilde{h}(\frac{k}{2^m}) = \tilde{s}(0) \prod_{m=1}^\infty \tilde{h}(\frac{k}{2^m}).$$
$$k = 0 \qquad \rightarrow \qquad 1 = \prod_{l=1}^\infty \tilde{h}(0) = \tilde{h}(0) = \sum_{l=0}^{2K-1} \frac{h_l}{\sqrt{2}}$$

 $\sum_{l=0}^{2K-1} h_l = \sqrt{2}$: Necessary for the renormalization group equation to have a solution

Support of the solution s(x) to the RG equation

$$egin{aligned} s(x) &= rac{ ilde{s}(0)}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk e^{ikx} \prod_{m=1}^{\infty} ilde{h}(rac{k}{2^m}) = \ \sqrt{2\pi} ilde{s}(0) \prod_{m=1}^{\infty} (\sum_{l=0}^{N-1} rac{h_l}{\sqrt{2}} \delta(x-rac{l}{2^m})) \end{aligned}$$

which vanishes for $x \notin [0, N-1] = [2K-1]$.

Support of $s(x) \subseteq [0, 2K - 1]$ where N = 2K is the number of h_l 's Support is compact! All fractals are not created equal

Additional properties of s(x) depend on the choice of h_l

$$\sum_{l=1}^{2K-1} h_l = \sqrt{2}$$

Additional conditions:

$$\int s(x-n)s(x-m)dx = \delta_{mn}$$

$$\int x^m \sum_{l=0}^{2K-1} g_l s(x-l) dx = 0 \qquad m = 0, 1, \dots K - 1$$

$$g_l := (-)^l h_{2K-l-1}$$

Conditions define **Daubechies** K scaling functions:

Ingrid Daubechies

Meaning of conditions:

•
$$s_n(x) := T^n s(x) = s(x - n)$$
 are orthonormal.

•
$$x^m = \sum_n c_n s_n(x)$$
 pointwise for $m \le K$.

•
$$\sum_{l=1}^{2K-1} h_l = \sqrt{2}$$
 necessary for existence of solution.

• Equations determine h_l up to reflection: $h_l \rightarrow h'_l = h_{2k-1-l}$. See table:

Weight coefficients h_l for different K values

hı	K=1	K=2	K=3
h ₀	$1/\sqrt{2}$	$(1+\sqrt{3})/4\sqrt{2}$	$(1+\sqrt{10}+\sqrt{5+2\sqrt{10}})/16\sqrt{2}$
h_1	$1/\sqrt{2}$	$(3+\sqrt{3})/4\sqrt{2}$	$(5+\sqrt{10}+3\sqrt{5+2\sqrt{10}})/16\sqrt{2}$
h ₂	0	$(3-\sqrt{3})/4\sqrt{2}$	$(10 - 2\sqrt{10} + 2\sqrt{5 + 2\sqrt{10}})/16\sqrt{2}$
h3	0	$(1-\sqrt{3})/4\sqrt{2}$	$(10 - 2\sqrt{10} - 2\sqrt{5 + 2\sqrt{10}})/16\sqrt{2}$
h4	0	0	$(5+\sqrt{10}-3\sqrt{5+2\sqrt{10}})/16\sqrt{2}$
h_5	0	0	$(1+\sqrt{10}-\sqrt{5+2\sqrt{10}})/16\sqrt{2}$

Basis construction $(L^2(\mathbb{R}))$

Rescale and translate fixed point, s(x) $s_n^k(x) := D^k T^n s(x) = 2^{k/2} s\left(2^k (x - 2^{-k} n)\right).$ Support of $s_n^k(x)$ is $[2^{-k} n, 2^{-k} (n + 2K - 1)]$ $S_k :=$ resolution 2^{-k} subspace of $L^2(\mathbb{R})$:

$$S_k := \{f(x)|f(x) = \sum_{n=-\infty}^{\infty} c_n s_n^k(x), \quad \sum_{n=-\infty}^{\infty} |c_n|^2 < \infty\}.$$
$$S_k := D^k S_0$$

Renormalization group equation implies

$$\mathcal{S}_k \subset \mathcal{S}_{k+n} \qquad n > 0$$

$$\mathcal{S}_{k+1} = \mathcal{S}_k \oplus \mathcal{W}_k \qquad \mathcal{W}_k \neq \{\emptyset\}.$$

Multi-resolution decomposition of $L^2(\mathbb{R})$

$$\mathcal{S}_{k+1} = \mathcal{S}_k \oplus \mathcal{W}_k$$

Iterate

 $L^{2}(\mathbb{R}) = S_{k} \oplus \mathcal{W}_{k} \oplus \mathcal{W}_{k+1} \oplus \mathcal{W}_{k+2} \oplus \mathcal{W}_{k+3} \oplus \cdots = \cdots \oplus \mathcal{W}_{k-2} \oplus \mathcal{W}_{k-1} \oplus \mathcal{W}_{k} \oplus \mathcal{W}_{k+1} \oplus \mathcal{W}_{k+2} \oplus \cdots$ Wavelets ({ $w_{n}^{k}(x)$ } orthonormal basis for \mathcal{W}_{k})

$$w(x) := D \sum_{l=0}^{2K-1} g_l T^l s(x) \qquad g_l = (-)^l h_{2K-1-l}$$

$$w_n^k(x) := D^k T^n w(x) = 2^{k/2} w \left(2^k (x - 2^{-k} n) \right).$$

Same support as $\{s_n^k(x)\}$

Comments

Orthonormal basis for $L^2(\mathbb{R})$:

$$\{s_n^k(x)\}_{n=-\infty}^{\infty}\} \cup \{w_n^l(x)\}_{n=-\infty,l\geq k}^{\infty}$$

All basis functions constructed from a single function s(x).

The condition

$$\int x^m \sum_{l=0}^{2K-1} g_l s(x-l) = 0 \qquad m = 0, 1, \cdots K$$

that determines the h_l is equivalent to the requirement

 $\int x^m w_n^k(x) dx = 0 \qquad \forall k, n \qquad \text{and} \qquad m = 0, 1, \cdots, K - 1$

Local pointwise polynomial condition

Completeness implies

$$f(x) = \sum_{n} c_n s_n^k(x) + \sum_{n,l \ge k} d_{nl} w_n^l(x)$$

For $f(x) = x^m$, m < K all the $d_{nl} = 0$ which means

$$x^m = \sum_n c_n s_n^k(x) \qquad m < K$$

where for any x only a finite number of the $s_n^k(x)$ are non-zero.

This requires that both sides of the equation agree at every x

- This explains why JPEG works. All of coefficients d_n^k associated with structures that are smooth on scale 2^{-k} vanish, or are very small, resulting in an efficient representation of the data.
- The transformation relating S_{k+n} and $S_k \oplus W_k \oplus \cdots \oplus W_{k+n}$ is a real orthogonal transformations, called the wavelet transform, that can be performed very efficiently.
- The wavelet transformation can be used to recover an approximation to the original function.
- Basis allows natural resolution and volume truncations.

Weird stuff!

• Locally finite sums of fractal functions can be differentiable. This means that a FINITE number of these functions with complex fractal boundaries fit together like a jigsaw puzzle!

• Under any magnification the functions do not look like straight lines, but they are differentiable!

Х

As *K* increases:

Support increases,

Smoothness increases,

Number of non-zero functions at a point increases

Kernel, K(x, y) of a scattering integral equation after wavelet transform

 $F(x) = D(x) + \int K(x, y)F(y)dy$

Advantages of Daubechies wavelets

- Basis for $L^2(\mathbb{R})$.
- Basis functions have compact support.
- Infinite number of basis functions with support in any open set.
- Basis functions have limited (controllable) smoothness.
- $2^{k/2} s_n^k(x)$ are locally finite partitions of unity.
- Efficient at representing problems with multiple scales.
- In many applications basis functions do not have to be computed.

To do numerical analysis with fractal functions you need to be able to:

- Evaluate basis functions.
- Evaluate expansion coefficients.
- Integrals of polynomials \times basis functions.
- Implement boundary conditions.
- Integrate products of basis functions \times polynomials.
- Evaluate derivatives of basis functions.
- Evaluate products of basis functions, derivatives of basis functions and polynomials.
- Evaluate singular integrals.
- Evaluate integrals with moving singularities.

Standard methods cannot be used to satisfy these requirements.

The renormalization group equation is a new computational tool!

The renormalization group equation and the scale fixing condition provide a means to solve the problems on the previous slide!

Computation of fractal basis functions?

Approximation by iteration. Pick any function $f_1(x)$ satisfying $\int f_1(x)dx = 1$.

$$f_n(x) = \sum_{l} h_l D T^l f_{n-1}(x)$$
$$s(x) = \lim_{n \to \infty} f_n(x)$$

Exact calculation at dyadic rationals, use the renormalization group equation at dyadic rational points:

$$s(n) = \sqrt{2} \sum_{l} h_{l} s(2n-l) \qquad \sum_{n} s(n) = 1 \qquad n = 1, 2, \dots 2K - 2$$
$$s(r/2) = \sqrt{2} \sum_{l} h_{l} s(r-l) \qquad r = \frac{m}{2^{k}}$$

Calculations of integrals use the renormalization group equation and the scale fixing condition.

All moments of $s_n^k(x)$ and $w_n^l(x)$ can be computed exactly.

$$< x^m >_{s_n^k} := \int x^m s_n^k(x) dx = (\frac{1}{2})^{\frac{3nm}{2}} \int (x+n)^m s(x) dx$$

$$\langle x^{m} \rangle_{w_{n}^{k}} := \int x^{m} w_{n}^{k}(x) dx = (\frac{1}{2})^{\frac{3nm}{2}} \int (x+n)^{m} w(x) dx$$

Calculating moments:

$$< x^{m} >_{s} = \int s(x)x^{m}dx \qquad < x^{m} >_{w} = \int w(x)x^{m}dx.$$

 $< x^{0} >_{s} = (x^{0}, s) = \int dxs(x) = 1$

Using the renormalization group equation:

$$\langle x^{m} \rangle_{s} = (x^{m}, s) = (D^{-1}x^{m}, D^{-1}s)$$

= $\frac{1}{\sqrt{2}} \frac{1}{2^{m}} \sum_{l} h_{l}(x^{m}, T^{l}s)$
= $\frac{1}{\sqrt{2}} \frac{1}{2^{m}} \sum_{l} h_{l}((x+l)^{m}, s)$

$$= \frac{1}{\sqrt{2}} \frac{1}{2^m} \sum_{l} h_l \sum_{k=0}^m \frac{m!}{k!(m-k)!} l^{m-k} < x^k >_s .$$

Using $\sum_{l} h_{l} = \sqrt{2}$, and moving the k = m term to the left side of the above equation gives the recursion relation:

$$\langle x^m \rangle_s = \frac{1}{2^m - 1} \frac{1}{\sqrt{2}} \sum_{k=0}^{m-1} \frac{m!}{k!(m-k)!} \left(\sum_{l=1}^{2K-1} h_l l^{m-k} \right) \langle x^k \rangle_s.$$

Note k < m

$$< x >_{s} := \int x s(x) dx = \frac{1}{\sqrt{2}} \sum_{l=0}^{2K-1} l h_{l}.$$

With this definition:

$$\int (a+bx)s(x)dx = a+b < x >_s.$$

Boundary conditions:

$$\langle x^m \rangle_{s_n:0} = \int_0^\infty x^m s_n(x) dx$$

The renormalization group equation relates these endpoint partial moments to ordinary moments.

The computation reduces to linear algebra.

Integrating functions with small support

One-point quadrature Property of moments

$$\int x^2 s(x) dx = (\int x s(x) dx)^2$$
$$< x^2 >_s = < x >_s^2$$
$$\int p(x) s(x) dx = \int (a + bx + cx^2) s(x) dx =$$
$$a + b \langle x \rangle_s + c \langle x \rangle_s^2 = p(\langle x \rangle_s)$$

 $\langle x \rangle_s = \frac{1}{\sqrt{2}} \sum_{l=0}^{2K-1} lh_l.$

General methods - integrals of products of basis functions:

Step 1: Increasing resolution 2^{-k} :

$$s_n^k(x) = \sum_{l=0}^{2K-1} h_l s_{2n+l}^{k+1}(x)$$

Step 2: Replacing wavelets by scaling functions:

$$w_n^k(x) = \sum_{l=0}^{2K-1} g_l s_{2n+l}^{k+1}(x)$$

Step 3: Changing scale: $2^{-k} \rightarrow 0$

$$\int s_{n_1}^k(x) \cdots s_{n_m}^k(x) dx = 2^{\frac{km}{2}-k} \int s_{n_1}^0(x) \cdots s_{n_m}^0(x) dx$$

Calculating the k = 0 integrals

Step 4:Use the renormalization group equation

$$\Gamma_{n_1,\cdots,n_k} := \int s_{n_1}^0(x) \cdots s_{n_m}^0(x) dx \quad \text{use } n_1 = 0$$

Homogeneous equation (RG equation):

$$\Gamma_{n_1,\cdots,n_m} = \sum 2^{m/2-1} h_{l_1} \cdots h_{l_m} \Gamma_{2n_1+l_1,\cdots,2n_m+l_m}$$

Step 5: Inhomogeneous equation: use $\sum s_n(x) = 1$:

$$\sum_{n_1} \Gamma_{n_1,\cdots n_m} = \Gamma_{n_2,\cdots n_m}$$

Step 6: Solve the finite linear system

Integrating products of scaling functions and polynomials Homogeneous equations (RG equation)

$$I_{n_{1}\cdots n_{k}}^{m} := \int x^{m} s_{n_{1}}(x) \cdots s_{n_{k}}(x) dx =$$

$$2^{-\frac{2m+k}{2}} \sum h_{l_{1}}\cdots h_{l_{k}} \int x^{m} s_{2n_{1}+l_{1}}(x) \cdots s_{2n_{k}+l_{k}}(x) dx =$$

$$2^{-m-k/2} \sum h_{l_{1}}\cdots h_{l_{k}} I_{2n_{1}+l_{1}}^{m} \cdots 2n_{k}+l_{k}$$

Inhomogeneous equations

$$\sum_{n_1} I^m_{n_1 \cdots n_k} = I^m_{n_2 \cdots n_k}$$

Solve using linear algebra and recursion on k.

A necessary condition for the solution of the RG equation to have k derivatives can be obtained by differentiating the RG equation k times, which gives

$$\frac{d^k s(x)}{dx^k}(x) = \sqrt{2}2^k \sum_l h_l \frac{d^k s(x)}{dx^k} (2x - l)$$

Letting x = m and n = 2m - l gives the eigenvalue equation

$$\frac{d^k s}{dx^k}(m) = \sqrt{2}2^k \sum_n h_{2m-n} \frac{d^k s}{dx^k}(n)$$
$$\sum_n H_{mn} \frac{d^k s}{dx^k}(n) = 2^{-k - \frac{1}{2}} \frac{d^k s}{dx^k}(m)$$

The matrix is $(2K - 2) \times (2K - 2)$ which limits the number of eigenvalues (again - calculus replaced by linear algebra).

Derivatives of basis functions

$$\frac{ds(x)}{dx} = 2\sum h_l DT' \frac{ds(x)}{dx}$$

Replaces renormalization group equation

Differentiate

$$x = < x >_{s_n} + \sum_n ns_n(x)$$

to get a normalization condition

$$1 = \sum_{n} n \frac{ds_n(x)}{dx}$$

Example: Integral of product of derivatives (K = 3) 0 unless the support of s_m and s_n overlap

$$D_{mn} = D_{m-n,0} = \int \frac{ds_m(x)}{dx} \frac{ds_n(x)}{dx} dx$$

non-zero $D_{m,0}$ have exact rational values

 $D_{40} = D_{-40} = -3/560$ $D_{30} = D_{-30} = -4/35$ $D_{20} = D_{-20} = 92/105$ $D_{10} = D_{-10} = -356/105$ $D_{00} = 295/56.$

Singular integrals

$$S_n^+ := \int \frac{s_n(x)dx}{x+i0^+}$$

Renormalization group equation

$$S_n^+ := \sqrt{2} \sum_l h_l S_{2n+l}^+$$

Treatment of singularity (partition of unity)

$$-i\pi = \sum_{n} \int_{-a}^{a} \frac{dx s_{n}(x)}{x + i0^{+}} = \sum_{n} S_{n:a}^{+}$$

$$S_{n:a}^{+} = \int_{-a}^{a} \frac{s_{n}(x)dx}{x+i0^{+}} = \frac{1}{n} \int_{-a-n}^{a-n} \frac{s(x)dx}{1+x/n} = \frac{1}{n} \sum_{k=0}^{\infty} (\frac{-1}{n})^{k} \int_{-a-n}^{a-n} x^{k} s(x) dx$$

RG equation couples integrals over x = 0 to integrals with support far from x = 0. The integrals far from the singularity can be approximated in terms of moments. Rigorous error bounds can be computed. The evaluation of the integrals reduce to algebra.

$$S_n^+ = \int \frac{s_n(x)dx}{x+i0^+}$$
 $n = -1, -2, -3, -4$

Table 2: Singular integrals (K = 3)

-0.1717835441734- i4.041140804162
-1.7516314066967+ i1.212142562305
-0.3025942645356- i0.299291822651
-0.3076858066180- i0.013302589081

Integrals with natural logs

$$L(n) := \int_0^\infty s_n(x) \ln(x) dx$$

The renormalization group equations gives

$$L(n) = \frac{1}{\sqrt{2}} \left(\sum_{l} h_l L(2n+l) - \ln(2) \right).$$

L(n) for large n can be expressed in terms of moments

$$L(n) = \int s_n(x) \ln(x) dx = \int s(y) \ln(n(1 + y/n)) dy$$
$$= \ln(n) - \sum_{m=1}^{\infty} \frac{(-1)^m}{m} \frac{\langle x^m \rangle_s}{n^m}.$$

Table 2:	Log	integra	ls
----------	-----	---------	----

K = 2		
n = -2	$\int s_n(x) \ln x dx$	0.456927033732831
n = -1	$\int s_n(x) \ln x dx$	-1.64215549088219
<i>K</i> = 3		
<i>n</i> = −4	$\int s_n(x) \ln x dx$	1.15737952417967
<i>n</i> = −3	$\int s_n(x) \ln x dx$	0.750468355278047
n = -2	$\int s_n(x) \ln x dx$	0.315624303943019
n = -1	$\int s_n(x) \ln x dx$	-1.83646456399118

Autocorrelation function

$$A(x) := \int s(x-y)s(y)dy$$

Renormalization group equation for A(x)

$$A(x) = \sum_{m,n} h_m h_n A(2x - m - n)$$

$$a_l = \frac{1}{\sqrt{2}} \sum_n h_{l-n} h_n$$

$$A(x) = \sum_{l=0}^{4K-2} a_l DT^l A(x)$$

Scale fixing for A(x)

$$\int A(x)=1$$

Integrals with moving singularities

$$J_{k-m-n} := \int \frac{s_m(x)s_n(y)dxdy}{k-x-y+i0^+} = \int \frac{A(x)dx}{k-m-n-x+i0^+}$$

Renormalization group equation for A(x)

$$J_n = \sqrt{2} \sum_{l} a_l J_{2n-l}$$
$$1 = \sum_{n} A(x+n)$$
$$i\pi = \sum_{n} \int_{-a}^{a} \frac{A(x+n)dx}{-x+i0^+} = \sum_{n} J_{n:a}$$

Applications (my interests)

- Solving singular integral equations for scattering and imaging.
- Renormalizing equations of quantum field theory.

Detemine how parameters of theory behave as a function of resolution and volume for fixed measured quantities. Looking for fixed point.

• Path integral representations of quantum field theory.

Replaces time evolution of system with an infinite number of degrees of freedom by an infinite dimensional integral. Important for quantum computing.

Conclusions

- Daubechies wavelets are a useful basis for problems involving multiple scales.
- Standard numerical methods do not work very well when applied to fractal functions.
- In most cases the standard numerical methods can be replaced by new methods based on the renormalization group equation.
- The calculations of derivatives and integrals are replaced by linear algebra.
- Basis provides control over resolution and volume while remaining efficient.

Local references:

Palle Jørgensen : Analysis and Probability Wavelets, Signals, Fractals

O. Bratelli and P. Jørgensen : Wavelets through a looking glass

Zhihua Zhang & Palle Jørgensen Hermite-Wavelet Transforms of Multivariate Functions on [0,1] Acta Applicandae Mathematicae 170,773(2020)